مطالعه موردی تأثیر تبدیل مراتع به اراضی کشاورزی بر بخش ویژگی‌های فیزیکی حاصل خزی، و شاخص کشت پذیری خاک در بروجن

محمدعلی حاج‌عباسی‌ی، احمد چلی‌یان‌ی، جمال‌الدین خواجه‌الدین‌ی، و حمیدرضا کریم‌زاده‌ی

چکیده

خاک‌های مراتع استان چهارمحال و بختیاری به خاطر پستی و نشینی، ساختاری ضعیف و کم پرند، موارد آلی، هموارا در معرض تخریب و فرسایش قرار گرفته‌اند. تبدیل این مراتع به زمین‌های کشاورزی و کسب و کارهای عملیات کشاورزی، شدت تخریب‌پذیری در این خاک‌ها را افزایش می‌دهد. در این پژوهش عوامل داخلی در شاخص کشت پذیری و بخشی از ویژگی‌های حاصل‌خزی خاک، در سه مرحله تحقیقاتی یک‌ساله، تبدیل شده تحت تکثیر، و تبدیل شده کامل (تکثیر شده بررسی گردیده است) این عوامل عبارتند از: بسته، و مواد آلی، درصد اشباع، شاخص محرک‌های نیتروژن، فسفر، یونسیس، انجام عملیات الگوهای فیزیکی، شاخص خویری، ماینگین و رژه فطر خاک‌دانه‌ها و توزیع اندازه‌ای خاک‌دانه‌ها. حدود ۲۰ سال انجام عملیات کشت و کار به‌عنوان نیروی محسوبی در بالا و مقدار رس گردیده است. در خاک مینت تخریب شده، خاک مخصوص فضایی خاک حدود ۲۰٪ افزایش یافته، رشد انجام خاک به میزان ۲۰ درصد کمتری از در خاک مینت برگرفته و تحت کشت پیش آمده درصد اشباع خاک در مراتع تخریب شده ۲۵٪ بیشتر از مراتع تخریب کرده و می‌خورده، مقادیر نیتروژن کل و فسفر بالای و یک درصد یک درصد کمتری به دست آورده، در عملیات انجام پذیر شده می‌باشد. نتایج این پژوهش نشان داد که برخوردار با سابقه طولانی با پایداری و هماهنگی با یکدیگر کاری طولانی دست آنها باید، بر اساس استفاده از این مشابه با پایداری طولانی و نسبت انسانی کاری طولانی مدت آنها باشد. در صورت توجه نکردن به این عوامل، به موردنکیت خاک کاهش می‌یابد و اگر مدرکی مناسب با موجودت خاک چاپ گزین نگردد، ممکن است خاک برای مؤثریه توان بهره‌وری

واژه‌های کلیدی: مراتع خاک، شاخص کشت پذیری، تخریب خاک، مواد آلی

1. به‌ترتیب دانشیار، دانشجوی، دکتری خاک‌شناسی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
2. استادیار مرتضی‌نیا، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

149
بیولوژیک آن می‌گوید که مواد آلی بر اثر تغییر دمایت این زمین‌ها توسط بیوتون‌ها یا حشره‌ها گزارش شده است (۱۷، ۱۹، ۲۱ و ۲۲). رابطه میان مقدار مواد آلی و ساختار خاک در طیف ابست. این سوی کمی که بیشترین بیان تغییر ساختار خاک و نانک را باعث می‌شود، و از سوی دیگر تغییر ساختار خاک باعث از بین رفتن مواد آلی خاک می‌گردد (۱۷، ۲۱ و ۲۲). تغییر ساختار خاک بر دیگر ویژگی‌های آلی مانند جرم مخصوص ظاهری، استحکام، و نیز نفوذ آب به خاک تأثیر گذاری می‌کند و نهایتاً به حاصلخیزی و کشتی‌پذیری آن موثر می‌باشد.

در ایران، مراتع و جنگل‌ها به طور عادی در مکان‌هایی واقع نمی‌کند که از توان خاک‌پر خیامی برخوردار می‌باشد. خاک این مناطق طی سال‌های متمایل هماهنگ با گونه‌های که باتلاق استقرار یافته و بازده می‌کند خود را به همراه است. اگرچه این بازده از حدود کم‌درجه درحال صرف در این محلی پایین‌تر است، ولی با اعمال عملیات خاک‌پزشکی از حالات خاک‌پزشکی خارج شده و به شدت تغییر پذیری گسترش یافته و کمترین بناها را نیز نگه‌دارد. بررسی تغییرات ویژگی‌های فیزیکی و شیمیایی خاک‌های مرطوب، پس از تبدیل آنها به زمین‌های کشاورزی، می‌تواند بیانی برای تغییر چگونگی روندهای را با مشکل‌های تغییرات می‌کند که در ضریب کشت‌پذیری خاک‌های مرطوب می‌تواند تغییرات در درجه کشت‌پذیری و نیز بنا شده باشد. می‌توان مراتع در زمین‌های کشاورزی تغییر داشته باشد. در زمین‌های کشاورزی تغییرات کشاورزی آنها را با دست آورده و دریافت که تا حدی این تغییرات نبوده است. برای نشان دادن تغییرات کمی ویژگی‌های فیزیکی و شیمیایی بر اثر تبدیل اراضی مرطوب به کشاورزی، می‌توان از شاخص‌های پیام‌های اضافه‌شده در سال ۱۹۹۲ و همکاران (۲۳) شاخص کشت‌پذیری را معرفی نموده. این شاخص از عواملی مانند جرم مخصوص ظاهری، میانگین وزنی قطر خاک‌های و توسعه اندوخته، نیز شاخص‌های کشت‌پذیری مواد آلی و ضریب فروشی شکل شده است.

دو کوشیدگی پایدار در هر نظام، نیازمند قوام موفقیت‌های تکنیکی هستند. این می‌باشد. می‌تواند از نظر اصلی، می‌تواند به شمار می‌آید. آب خاک، چرخ و مرتع از این ارکان اصلی ملایم تغییرات و کشاورزی بوده و در حال حاضر الزامات اقتصادی با کشاورزی تعلیم و در حوزه عوامل زیرنوا هستند. آنها تراکم اقتصادی و فرعی وابستگی و حفظ محیط زیست را در پی دارد، باید به استقلال فرهنگی، سیاسی و اقتصادی که از دیگر شاخص‌های توسه‌پذیری هستند، می‌گردد. با در نظر گرفتن جمعیت پنج میلیاردی جهان در سال ۱۹۸۱، سرانه زمین کشاورزی به طور میانگین ۲۰ هکتار بوده است، که در سال ۲۰۰۰ به ۲۴ هکتار می‌رسید، و پیشرفتی‌هایی که این رقم در سال‌های ۲۰۰۰ و ۲۰۱۰ به ترتیب ۱۵ و ۲۵ هکتار بوده است (۱۵). از این دیدگاه، تولید سرانه غلات که تا سال ۱۹۵۰ در هر دهه ۲ درصد رشد داشته، پس از آن تا سال ۱۹۸۰ در دو درصد و در همه بعد تا ۱۹۹۰ حدود هفت درصد کاهش نشان می‌دهد. (۱۵) بنابراین، افزایش تعاونیه جمعیت، و نیز کاشت و تولید باعث شده که انسان‌ها همکاری در صدی کشاورزی و گسترش زمین‌های باندی که کودکی استفاده کشاورزی و تولید قرار دهنده، و حتی برای کشت زمین کشاورزی به تصرف درآورند. ولی به طور کلی، این زمین‌ها از لحاظ پستی و بلندی و زیرخاکی خاک‌های توان کشاورزی طلایی مدت را نداشته، و به نمایندگی ساختار آن بنا بر فراشیت است، و در اثر تیتان، مرطوب و جنگل‌ها به زمین‌های کشاورزی و عملیات خاک‌پزشکی، سالانه حدود ۴۰ میلیون هکتار از اراضی کشاورزی گوناگونی که برای ۴۰ درصد کل زمین‌های شخم خورده در است. فراشیت می‌باشد.

در این مراتع به خاطر دارای بودن مواد آلی نسبتاً زیاد و ساختار مناسب، همکاری مرطوب توجه به هم است، ولی تغییر در مدیریت کاربرد آنها و اعمال خاک‌پزشکی تأثیر زیادی بر مقدار مواد آلی و دیگر واکنش‌های فیزیکی و شیمیایی حاصل خواهد شد.
مثال موردی تأثیر تبدیل مراتع به اراضی کشاورزی بر پایه دیگر های تیزیکی

مترات به مزارع در ویژگی‌های تیزیکی و حساسیت خرید ای، تغییرات کمی شده، و سپس تحت عنوان شاخص کشت‌پذیر
تیمارهای مرجع دست نخورده، مرجع دست نخورده ویل عفول، و
مرتب کاملاً تخریب یافته، در منطقه جرگان واقع در استان
چهارمحال و بختیاری می‌باشد.

مواد و روش‌ها

منطقه مورد بررسی مراتع اطراف جرگان در استان چهارمحال و
بختیاری و در جنوب غربی حوزه آبخیز شمال رودخانه کارون
واقع شده است. این ناحیه دارای آبگیران سنگین‌سالانه بارندگی
500 میلی‌متر و دمای C 1499، و آبی‌نیمه مرطوب-گرم با
زمستانهای سرد می‌باشد.

عملیات صحراپی

سهمیه پی از تحقق سنگین‌سالانه و سن پکسان بودن
واقع در منطقه دارای هفت کیلو متر جنوب غربی شهر بروجن
اختیار گردید. از این ناحیه، یکی دیگری پوشش کامل مرغی
پر و دست نخورده، دیگری مرتعی که آن را متناوبا شش‌ماده
و کشت دیم داشته و در حال حاضر مرتع دیم‌های شده
می‌باشد، و سومی مرتعی که پس از 20 سال با تعداد
شمش زیادی کاملاز این رفت و مواد مادی آن تغییر آشکار شده
بود، انتخاب گردید. زرنگا 13 کلی باکا حداکثر حدود
20 سانتی‌متر بوده، به میلی مرطوب‌سازی هواداری به
بلوک تسوی، و پسی نمونه‌های خاک برای انجام آزمایش‌های
مربود از اتفاق‌های 1000-2000 سانتی‌متر برداشت شد.

تجزیه فیزیکی و شیمیایی

ویژگی‌های شیمیایی و فیزیکی خاک مانند باد (19)، جرم مخصوص
Plasticity) PI، (مواد آلی (18)، شاخص خمیری یا (Index
، و حدود آتربی (1) اندازه‌گیری شد. شاخص
CI) به عنوان

فثر متوسط وزنی خاک‌دانها از رابطه زیر استفاده گردید:

CI = [C1/(F/A)100] / [A100] - 1
شاخچی کشت درایی طیفی برای صرف تن تا یک است، و برای شراپ‌هایی از خاک که غیر قابل استفاده برای گیاهی می‌باشد برای صرف و در شراپ‌هایی که هیچ گونه محدودیت برای رشد و نمای گیاه ندارد مقداری برای یک است. پس از استفاده از شاخچی کشت اراضی (TI) امواج در خاک مرتی و کشاورزی (مرتی) که به زمین‌های کشاورزی تعلیق شده را در نظر کشت‌دهی‌های به هم مقایسه کرد مقدار محدودیت‌های مختلف برای بسیاری روش‌های مندرج در جدول ۱ محاسبه شده است (۲۳).

روش‌های میترا و اندارزه‌گری‌های ویژگی‌های خاک در اواخر پاییز سال ۱۳۸۷ انجام گرفت. در هر بلوک سه نمونه از هر SAS عملیه تی و گردید. تحلیل‌های آماری نتایج توسعه بررسی به آنها (۲۴) انجام گرفت. و میانگین تکرارهای هر ویژگی در اراضی مرتی که تحت کشت‌دهی تخریب شده بسیار برای توانایی استفاده در بیشتری توانایی استفاده در بیشتری داشتهای دانکن با یکدیگر مقایسه گردد.

نتایج و بحث

تجلیل آماری مربوط به پارامترهای اندازه‌گیری شده و ضرایب همبستگی میان متغیرها در منطقه برخورداری داشته‌اند اختلالاتی بین تیمارها و یا میان اندازه‌گیری شده در اراضی مرتی نتوانسته که بین تیمارها و یا از لحاظ آماری (در سطح پنجم درصد احتمالات) تفاوت معنی‌داری داشته‌اند، ارائه شده است. به طور کلی این نتایج می‌تواند کلیه روابط و EC اعماق و آثار متقابل آنها معنی‌دار نباشد. نتایج به بارندگی سالانه ۵۰۰ میلی‌متری، بکسلا بودن مقادر سولفات‌های موجود در خاک مواد آلی، شاخص دیگر چهارمین شده از میان. به طوری که ضریب تاثیر (Coefficient, TC) بین تیمارهای بارانگی‌ها می‌باشد (۳۳). ضریب تیمارهای بارانگی‌ها می‌باشد (۳۳). ضریب تیمارهای بارانگی‌ها می‌باشد (۳۳).

\[
\text{TCX} = A + A_1 \times X + A_2 \times X^2
\]

سپس شاخچی کشت‌ها (TI) به صورت معادله‌ای از حاصل ضرب ضرایب کشت برای مجموع ویژگی‌های خاک خواهد بود که به ترتیب زیر تعبین گردد.
جدول 1. مقادیر محدودیت و وزن مخصص ظاهری خاک. موارد آلی، شاخص مخربی، شاخص خشک، شاخص سه‌بعدی و ضریب پیگذشتنی خاکدانه ها به‌منظور کم‌کردن مقدار کشت بهتری

<table>
<thead>
<tr>
<th>شاخص مخربی (MPa)</th>
<th>TC(BD) = 1/5</th>
<th>For (BD < 1/3)</th>
<th>TC(BD) = (-1/5 \times 3/AV \times BD - 1/5 \times BD)</th>
<th>For (1/3 < BD < 1/1)</th>
<th>TC(BD) = (1/5)</th>
<th>For (BD > 1/1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن مخصص ظاهری (Mg(m^3))</td>
<td>TC(CI) = 1/5</td>
<td>For (CI < 1/5)</td>
<td>TC(CI) = (1/10 + 0/002 \times CI - 0/001 \times CI)</td>
<td>For (1/5 < CI < 1/10)</td>
<td>TC(CI) = (1/5)</td>
<td>For (CI > 1/10)</td>
</tr>
<tr>
<td>مواد آلی</td>
<td>TC(OM) = 1/5</td>
<td>For (OM > 5)</td>
<td>TC(OM) = (0/09 + 0/12 \times OM - 0/0068 \times OM)</td>
<td>For (7/1 < OM < 5)</td>
<td>TC(OM) = (0/05)</td>
<td>For (OM < 7/1)</td>
</tr>
<tr>
<td>ضریب پیگذشتنی خاکدانه</td>
<td>TC(AUC) = 1/5</td>
<td>For (AUC > 5)</td>
<td>TC(AUC) = (0/345 + 0/245 \times AUC - 0/23 \times AUC)</td>
<td>For (AUC < 5) and (> 2)</td>
<td>TC(AUC) = (0/5)</td>
<td>For (AUC < 2)</td>
</tr>
<tr>
<td>شاخص بالاستیکی</td>
<td>TC(PI) = 1/5</td>
<td>For (PI > 15)</td>
<td>TC(PI) = (1/10 + 0/019 \times PI - 0/0161 \times PI)</td>
<td>For (7/15 < PI < 7/40)</td>
<td>TC(PI) = (0/5)</td>
<td>For (PI > 7/40)</td>
</tr>
</tbody>
</table>

شمار شده و همراه با روان‌آب فرسایش یافته، و با یکی از زیرین متقل شونده (11) تفاوت معنی‌داری در بافت و درصد رس بین تیمارها و در زرفای 10-20 سنای می‌دیه نشده (جدول 2). ш

جرم مخصص ظاهری خاک درصد نخورده خاک (مزینت دست نخورده) خاک دارای بافت رس سپیله با مقدار 44 درصد رس بوده و یکی از مهم‌ترین ساختار خاک (مزینت ثخیر شده) باید آن به لوم رس سپیله و با 39 درصد رس سپیده است. مزینت در حالت خشک تر مزینت بافت رس سپیله با 41 درصد رس می‌باشد (جدول 2) با یکی از مهم‌ترین خاکدانه.

مادای آلی در معرض هوا قرار گرفته، اکسید شده و از این می‌رود. در تهیه خاکدانه‌ها نخ خشک شده و تولید خاکدانه‌ای ریزتر می‌نمایند. این عمل باعث می‌شود ذرات راحت‌تر در آب...
جدول ۲. ویژگی‌های فیزیکی خاک‌های مورد بررسی ناحیه بروجن در مرحله دست‌نخورده، تخربی شده و تحت کشت

<table>
<thead>
<tr>
<th>میزانگی چهار تراکم عمیق</th>
<th>بقای اراضی</th>
<th>وضعیت دست‌نخورده</th>
<th>مرطع تخربی شده</th>
<th>مرطع دست‌نخورده</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ظرفای ۱۰–۱۰۰ cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/۸۴۲</td>
<td>۳۷۲</td>
<td>۱/۲۲۲</td>
<td>۴۴۲</td>
<td></td>
</tr>
<tr>
<td>1/۳۱۲</td>
<td>۱۲۹۱۱</td>
<td>۱/۶۱۱</td>
<td>۳۸۱</td>
<td></td>
</tr>
<tr>
<td>1/۷۷۲</td>
<td>۸۵۲</td>
<td>۱/۳۲۲</td>
<td>۴۱۲</td>
<td></td>
</tr>
<tr>
<td>(ظرفای ۱۰۰–۲۰۰ cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>۱/۸۴۲</td>
<td>۷۹۲</td>
<td>۱/۲۴۲</td>
<td>۵۴۲</td>
<td></td>
</tr>
<tr>
<td>۱/۶۸۲</td>
<td>۴۲۲</td>
<td>۱/۶۱۱</td>
<td>۵۹۲</td>
<td></td>
</tr>
<tr>
<td>۱/۷۱۲</td>
<td>۷۹۲</td>
<td>۱/۳۲۲</td>
<td>۴۱۲</td>
<td></td>
</tr>
</tbody>
</table>

مقدار در هر سنتیمتر برای هر متر گرمی با حرف مشابه، از لحاظ آماری و در سطح پنج درصد احتمالات ناکافی تدارید.

ساختار خاک پر اثر عملکردی در خاک‌های مورد بررسی باعث شده است که میزان مواد آلی و مقدار مواد آلی آنها بیشتر از خاک مرطع تخربی شده و نیز ساختار خاک دست‌نخورده است، مقدار درصد آب در حالت اشباع بیشتر می‌باشد. به علت پراکنش گروه‌های کربن در زرف‌های صفر تا ۱۰ سانتی‌متری، مقدار درصد آب خاک در حالت اشباع در مرطع دست‌نخورده حدود ۴۵ درصد بیشتر از خاک مرطع تخربی شده می‌باشد (جدول ۱). در زرف‌های ۱۰–۲۰ سانتی‌متری تفاوت معنی‌داری میان تیمارها دیده نشد است (جدول ۲). در پژوهش دیگری (۱۷) نیز گزارش شده که تغییرات بیشتری یافته است. در اثر تخلخل کل خاک از ۵۰ درصد به حدود ۶۵ درصد کاهش یافته بوده است (۱۷).

درصد رطوبت در گل اشباع در خاک مرطع دست‌نخورده و مرطع تحت کشت که میزان رس و مقدار مواد آلی آنها بیشتر از خاک مرطع تخربی شده و نیز ساختار خاک دست‌نخورده است، مقدار درصد آب در حالت اشباع بیشتر می‌باشد. به علت پراکنش گروه‌های کربن در زرف‌های صفر تا ۱۰ سانتی‌متری، مقدار درصد آب خاک در حالت اشباع در مرطع دست‌نخورده حدود ۴۵ درصد بیشتر از خاک مرطع تخربی شده می‌باشد (جدول ۱). در زرف‌های ۱۰–۲۰ سانتی‌متری تفاوت معنی‌داری میان تیمارها دیده نشد است (جدول ۲). در پژوهش دیگری (۱۷) نیز گزارش شده که تغییرات بیشتری یافته است. در اثر تخلخل کل خاک از ۵۰ درصد به حدود ۶۵ درصد کاهش یافته بوده است (۱۷).

پاور و بلاک (۲۳) نیز گزارش نموداده که جرم مخصوص ظاهری مراتع دست‌نخورده بین ۷ تا ۲۰ درصد کمتر از مراتعی است که تغییرات باعث شده به مدت ۲۵ سال تحت کشت بوده و پس از ۲۰ سال تحت کشت تغییرات باعث شده است که تغییرات باعث شده به مدت ۲۵ سال تحت کشت بوده. به عنوان نمونه گزارش‌های آزور و مه‌کران (۲) و آلن (۱۱) افزایش جرم مخصوص ظاهری (افزایش تراکم خاک) باعث کاهش خالص و فرضی فشار شتاب‌های به پی داشته است. تأثیر

بخار شایع یافته و فرسایش شتاب‌های را در پی داشته است.
مواد آلی
مواد آلی خاک مرتع دست نخورده در زرفای صفر تا 10 سانتی‌متری به میزان 30 درصد بیشتر از خاک مرتع تخرب شده (به ترتیب 1/84 و 1/29) در این منطقه می‌باشد (جدول 1). ولی مقدار مواد آلی خاک مرتع تحت کشت (1/74) تفاوت معنی‌داری با خاک مرتع دست نخورده در این عمق نداشت است. بنابراین کاهش مواد آلی خاک اکسید شدن این مواد در اثر شحم سالانه و فرسایش فیزیکی مواد آلی همراه باذر ریز خاک مانند رس می‌باشد. در گزارش دیگری نشان داده شده که به خاک مرتع مربوط به زمین‌های کشاورزی بافت کاهش چشمگیر (حدود 10 درصد) مواد آلی خاک در طی شش سال گردیده است (5). همچنین، اعمال مدیریت کشت حذفی و بسیار بدن‌های خاک‌های مرتعی نسبت به خاک‌های مرتعی مرسوم، باعث متحملات کردن آلیات خاک شده است (14) و 21.

مقدار مواد آلی در مرتع تخرب شده و تحت کشت و در زرفای 20-120 سانتی‌متری از لحاظ آماری تفاوت مربوط به مقدار دری نشان داده است، ولی مقدار مواد آلی خاک در خاک مرتع دست نخورده به ترتیب 16 و 18 درصد بیشتر از تیمارهای پای کشت می‌باشد (جدول 2).

شاخص مخروطی
به طور کلی هرچه خاک در دارای مواد آلی بیشتر باشد سطح تپاتی نیز درآمده داشت (دارای خاک‌های بیشتر بر روی زیر گستر است)، و همچنین از این نکته به بحث احتمال افزایش بیشتر حاکمه ریشه گیاهان از خود نشان داده‌بود. در آزمایش‌ها، اضافه‌کردن سالانه 40 و 80 تون در هektار زمین به خاک به کیلو متر مربع در مدت سه سال، شاخص مخروطی را به ترتیب 30 و 40 درصد کاهش داده است (24). از این‌رو تفاوت معنی‌داری مقدار فرسایش خاک تیمارهای بررسی حاضر که در زرفای صفر تا 20 سانتی‌متری انجام گرفته، وجود داشت، به طوری که بر روی خاک مرتع دست نخورده که حاوی مواد آلی بیشتر بود، خاک مرتع تخرب شده، به ترتیب 1870 و 5870 MPa، با بار پرداخت 13180 و 57 کیلوگرم تیم در سال (جدول 13).
جدول 2. مقادیر شاخص محیطی، نیتروژن کل، فسفر بالغ جذب، پتاسیم و شاخص خمیری خاک‌های مورد بررسی ناحیه بروجن در متر

| شاخص محیطی | نیتروژن کل (mg/kg) | فسفر (mg/kg) | پتاسیم (meq/l) | وضعیت اراضی (MPa) | متعلقه نخورده | متعلقه تخرب شده | متعلقه کشت
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>39 a</td>
<td>0/27 a</td>
<td>0/32 a</td>
<td>0/22 b</td>
<td>0/18 b</td>
<td>0/89 b</td>
<td>0/82 b</td>
<td>0/78 a</td>
</tr>
<tr>
<td>38 b</td>
<td>0/21 b</td>
<td>0/33 b</td>
<td>0/21 b</td>
<td>0/19 b</td>
<td>0/87 a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مقدار در هر ستون با حرف می‌شود، از لحاظ آماری در سطح پنج درصد احتمالی تفاوت ندارد.

\(\text{Cm}^2 \times 10 \)

‌میانگین وزنی قطر خاک‌های اینجا است و توزیع آنها

دو عامل اساس باعث به وجود آمدن خاک‌های پایداری آنها

است. این دو عامل وجود دارک‌سیستماتیک، ذرات به‌کوچک‌تر

(میانگین متوسط و موارد آنها) و بکار گرفتن تاثیر عوامل باعث کاشت‌های آنها نمیداند. فاصله عامل

در عمق 20-200 میلی‌متر می‌باشد. حال‌هیچ میزان

فوق حدودیت باند، و با اعمال باعث کاشت‌های آنها، محل

خاک‌های مورد باید به‌این خاک‌های کوه‌کریک

در دو ایستاده و 20/50 میلی‌متر کمتر بوده است. در بررسی

(بزرگتر 20/50 میلی‌متر در ایستاده 0/25 میلی‌متر در

زمین‌های کشاورزی مطر از مصرف دست نخورده بوده است، به

طوری که مقدار خاک‌های بزرگ‌تر از 25 میلی‌متر در

مصرف دست نخورده حدود 50 درصد و در مصرف تخرب شده

و تحت کشت به‌ترین 70 و 65 درصد می‌باشد (18).

شاخص کشت‌پذیری

در جدول 4 مقدار میانگین ضرایب ویژگی‌های مربوط به
شکل 1. منحنی توزیع اندازه‌ای خاکدانه‌ها در شاخص مرطع داده‌ها، تخریب شده و تحت کشت در عمق 0-10 سانتی‌متر در منطقه بولجین

شکل 2. منحنی توزیع اندازه‌ای خاکدانه‌ها در شاخص مرطع دست نخورده، تخریب شده و تحت کشت در عمق 10-20 سانتی‌متر در منطقه بولجین

که میانگین مقدار ضرایب کشت در مرطع به‌ویژه میانگین ضرایب کشت در تیماری از مرطع دست نخورده به‌ویژه میانگین ضرایب کشت در تیماری از مرطع به‌ویژه میانگین ضرایب کشت در تیماری
جدول ۴. ضرابی ویژگی‌های اندازه‌گیری شده CFx مربوط به ضریب کتیپسیدری خاک (TI)، برای خاک‌های مرتع دست نخورده، تخرب خاک

<table>
<thead>
<tr>
<th>عمق خاک (cm)</th>
<th>عمق تخلیه کشت</th>
<th>مرتع تخلیه شده</th>
<th>جرم مخصوص ظاهری CF(BD)</th>
<th>مواد آلی CD(OM)</th>
<th>ینکونایتی خاک‌دانه‌ها CF(AUC)</th>
<th>شاخص خمیری CF(P)</th>
<th>شاخص مخروطی CD(CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/99a</td>
<td>0/88b</td>
<td>1/0a</td>
<td>0/85b</td>
<td>0/99</td>
<td>0/79b</td>
<td>0/1b</td>
<td>0/44a</td>
</tr>
<tr>
<td>0/99b</td>
<td>0/88b</td>
<td>1/0a</td>
<td>0/85b</td>
<td>0/99</td>
<td>0/79b</td>
<td>0/1b</td>
<td>0/44a</td>
</tr>
<tr>
<td>0/88a</td>
<td>0/79b</td>
<td>1/0a</td>
<td>0/1b</td>
<td>0/99</td>
<td>0/79b</td>
<td>0/1b</td>
<td>0/44a</td>
</tr>
<tr>
<td>0/79b</td>
<td>0/1b</td>
<td>1/0a</td>
<td>0/1b</td>
<td>0/99</td>
<td>0/79b</td>
<td>0/1b</td>
<td>0/44a</td>
</tr>
<tr>
<td>0/1b</td>
<td>1/0a</td>
<td>1/0a</td>
<td>0/1b</td>
<td>0/99</td>
<td>0/79b</td>
<td>0/1b</td>
<td>0/44a</td>
</tr>
</tbody>
</table>

ضرابی ریز مربوط به وزن‌های با حروف مشابه، از ناحیه آماری تفاوت معنی‌داری ندارند.

نواحی (اعداد مربوط به پاسخ‌های میان‌برنده‌های بین‌البین)، و یک‌تیترین محدودیت از لحاظ میزان مواد آلی نشان داده شده است. در زرفای ۱۰۰ سانتی‌متری CFx که ۷۱ درصد برای خاک مراع دست نخورده و به ترتیب ۲۶ و ۳۳ درصد با برای مراع تخلیه شده و تحت کشت به صورت این مقادیر برای زرفای ام دیتر به ترتیب ۱۰ و ۲۴ درصد برای تیم‌های مراع دست نخورده، تخرب شده و تحت کشت این مقادیر بوده است.

سیاست‌گذاری

مزیج هر کیلولی به روشی مطرح می‌شود. CFx تحت عناوین بررسی‌های تاثیر اندازه‌گیری غلظت از اراضی (۱۳۷۰-۱۳۷۴) در تولید فروشان و رسوب در حوزه آب‌گیر شمالی و رودخانه کارون تأمین شده است، این به بینی و سیاست‌گذاری می‌گردد.

