مطالعه صفات زراعی و مورفولوژیک هیریدهای ذرت
از طریق تجزیه به عامل‌ها در همدان

مهدی رمضانی ۱، حسین منصوری ۲، حسن ابراهیمی کولاپی ۲ و علی کافی‌نامی ۲

(تاریخ دریافت: ۱۸/۸/۱۴۸۲، تاریخ پذیرش: ۱۴/۸/۱۴۸۲)

چکیده

به‌منظور مطالعه صفات زراعی و مورفولوژیک هیریدهای ذرت در منطقه همدان سینگل کراس‌های زودرس ۱۰۸، متوسطرس ۶۰۴، تری‌ریک کراس ۲۴۷ و بریس ۵۷۱ در مرکز تحقیقات کشاورزی و متون طبیعی همدان در خرداد ۱۳۸۴ در قالب طرح بلندکامل تصادفی در سه تکرار مورد کشت قرار گرفتند و صفت‌های مورفولوژیک و فیزیولوژیکی با استفاده از ۱۰ بونه تصادفی از دو خط وسط و با رعایت اثبات نژادی و روش‌های پاتری و گری در بیش از ۶۰۰ بونه علی‌قلمی در همدان و کرمان مورد بررسی قرار گرفتند. با توجه به حاکمیت شکستگی، در همدان، به‌طور کلی، بونه‌های بهتر خصوصیات فیزیولوژیکی و عملکرد نام‌گذاری شدند. سپس کراس ۱۰۸ به‌عنوان رقیق‌کن دانه کشت و یک رقیق کراس ۶۲۰ به‌عنوان رقیق‌کن به بیشترین عملکرد دانه و قطر بلاد و تعداد دانه در رشته بود تهیه شد. در این مطالعه، عملکرد دانه به‌طور کلی در همدان و کرمان به‌طور مشابه نمایش داد.

واژه‌های کلیدی: ذرت، هیریدهای، تجزیه به عامل‌ها، نمودار پراکش عامل‌ها، دوران عامل

مقدمه

ذرت دانه‌ای از جمله محصولاتی است که به‌دلیل اهمیت آن در تغذیه دام و طیور، بسیار مورد توجه می‌باشد. این محصول از ارزش بالایی برخوردار بوده و به‌طور عمیق‌تر به سال‌های گذشته و بالای ۴۰ سال تولید آن در سال‌های ۲۵ میلیون تن رسیده است. از این نظر بیانگر می‌شود که عنوانی از هیریدهای ژن‌هایی هستند که در همدان تولید کردند. مطالعه این ژن‌هایی نیز از جهت کشف و تولید دانه‌های بالایی از دیدگاه تحقیقات به بود که در این مطالعه به‌صورت انجام شد.

۱. به‌ترین دانشجوی سابق کارشناسی ارشد، استادیار و مربی زراعت و اصلاح نباتات، دانشکده علوم کشاورزی، دانشگاه گیلان
۲. عضو هیئت علمی مرکز تحقیقات کشاورزی و متون طبیعی همدان

* منبع مکاتبات، پست الکترونیکی: man_mehdi206@yahoo.com
در بررسی روى صفحات کیفی و کیفی سویا نیز سه سیمه اصلی راشناسی نمود. نامی وی نشان داد که عامل اصلی اول شامل ترکیب از صفات فیزیولوژیکی و ترکیبات ساختاری گیاه بوده و عامل دوم شامل صفات شاخص برداشت و تعداد نیام در ساخت اصلی و عامل سوم شامل تعداد غلاف در خوشش و شاخت به بود. عرب اول و ابراهیمی (۲۰) تیز در آزمایش خود به منظور بررسی تجزیه به مؤلفه‌های اصلی روزانه عمل‌کرد، اجزا عمل‌کرد و خصوصیات کیفی ارقام کلی در تاریخ‌های مختلف چهار مؤلفه اصلی را روش آماری کردند. روش‌نامه خورشیدی و همکاران (۲) در تجزیه به عامل اولاً و ۲۵ روز سنجاها استفاده نتوانسته‌اند که ۲۱/۱۲ درصد از پذیرش و برداشت ژناتیکی شاخص عامل که جمعاً ۲۱/۸۲ درصد از ارزیابی راه‌های خود احتمال داده‌بود به دلیل داشتن هموگلوبین‌ها با صفات طول بکر، و در بزرگ‌ترین، تعداد روز از کل دره‌های ترتیب‌گذاری و تعداد غلاف در هر گرو عمل رشد رپیشی نامیده و عامل دوم را عامل محور نام‌گذاری کردند. در تحقیقی دیگر مظهری (۴) تنوع زیستی ۱۰۵ لایه شامل ۱۰۹ رقم جوهری و ۴ رقم شاهد گیاه برنج ابزار ۱۷ صفت ارزیابی کرد. این اشاره به عامل اصلی که ۸/۸ غربال‌گیری کل دادها را توجیه می‌کرد را به‌دست آورد که ۴ عامل اول تحت عنوان‌های مورفولوژیکی کلی عمل‌کرد و تئوری آن، فنولوژی و خصوصیات خوش‌نمایی‌گرداوردگان.

در گیاه در به تحقیقاتی همانند کم در این زمینه صورت گرفته است از آن جمله احتمال‌دهنده (۱) در بررسی خود به منظور ابزار به‌تغییر شاخص مقاومت به خشکی، تعداد ۱۴ لاین بر گردیده در تحت دو شرایط تنظیم و بی‌تنظیم پس از تجزیه به مؤلفه‌های اصلی، نتیجه در مؤلفه‌ها که به آنها را توجیه می‌کرد، را شاخصی کردند. ابزار عامل اول را که ۸۹ درصد از کل ارزیابی دادها را توجیه می‌کرد را به‌دلیل وجود ضریب عاملی بلافاصله صفات تعداد روزها ۵۰ درصد اگه‌زده‌هی، تعداد روز تا ظهور گل کافی، تعداد روز تا ظهور گل کافی، تعداد روز تا ظهور گل کافی، تعداد روز تا ظهور گل کافی نام‌گذاری نمود. چرا که این مؤلفه دارای هم‌سنگی بالایی
مواد و روش‌ها
این آزمایش در مرکز اکتیون واقع در مدرسه تحقیقات کشاورزی و منابع طبیعی همدان در لابی طرح‌های کامپیوتری استفاده شده است. در این آزمایش، SAS نرم‌افزار 6.12 استفاده شد و نتایج آن با استفاده از نرم‌افزار 9 SAS مقایسه می‌گردد. هر یک از دو روش تجربی به عنوان ضریب میانگین به روش یک‌متغیره و معیارهای سطح و لایه نسبت به تابع SSQ مقایسه می‌گردد.

استادی گزارش‌های مطالعه صفات زراعی و مورفولوژیک هیدریدهایی در از طریق تجربه به‌عنوان در همدان هم‌چنین دیگر عامل‌ها را به ترتیب اندوزه برگ بالال، رشد گیاه، اجزای عملکرد، تعداد، خصوصیات چوب بالال و عامل SI نامگذاری کرده‌اند.

هدف از انجام این تحقیق مشخص نمودن رقمی مناسب برای مقدارهای در طریق استفاده از روش تجربی به عنوان عامل‌ها و نیز مقایسه بین ارقام زرد، سیاه و دیسرز در از طریق صفات مورد استفاده‌کننده بود.

داشتگردی‌ها و شمار صفات تعداد‌های روز ناشر گردش‌افزاری، تعداد روز تا ظهور گاهی کم، تعداد روز تا خستگی شدن کاکل، تعداد روز تا ریزش گیاهی یا مورفولوژیکی ارتفاع بیشتر، طول گل نازی، تعداد گره، طول عرض و محاسبه گره بالال اصلی، تعداد کل گره در بیشتر، تعداد بزرگ‌های بالال اصلی، تعداد بالال در بیشتر، قطر فازا، ارتفاع محل بالال اصلی، طول بالال، تعداد رشد دانه، تعداد دانه در ریز، قطر جای کنار بالال، طعم دانه و وزن بالال با غلاف و بدون غلاف، وزن چوب بالال، عمیق دانه، وزن بالال با غلاف و بدون غلاف، وزن چوب بالال، عمیق دانه دانه در بیشتر، نسبت دانه به بالال و وزن هزار دانه به که روی 10 بیوت.
دانه در ریف و تعداد کل برگ در بوته باید عملکرد ۵۰ درصد داشته باشد. همچنین هیپستژی عملکرد دانه با تعامل صفات به استاندارد تعداد آماره طول می‌رسد. مناسب‌ترین سری داده با توجه به این دو عامل اصلی داشت با عنوان رقم مناسب استخراج گردد.

نتایج و بحث

تجزیه و تحلیل مشخصات نمونه آن به صورت تعداد بالاتر در بوته، و زن بالا با غلاف، نسبت دانه به بالا، وزن خشک ریشه و نسبت ریشه به بسته‌های بوته که به هیبرید‌ها تفاوت معنی‌داری نشان دادند. قیمت صفات در هر سطح استخراج از صفات معنی‌داری داشتند. در نهایت باعث توجه به مقایسه میانگین داده‌ها (جدول ۱) برای صفات معنی‌داری مشخص گردید که هیبرید سینگال‌کراس ۹۴۷ با متوسط عملکرد ۲۵۸۷۳ کروم در بوته دارای بیشترین عملکرد دهنه توجه دیده بود، از این نگرش‌ها بیشترین بررسی در این آزمایش‌ها داشت.

پس از انجام تجزیه به عامل‌های تأثیر گذار و تاثیر مشخص در هر جایی اصلی تعادل صفات به صورت تعداد بالا ۸۵/۴۰ درصد از تغییرات داده‌ها را توجیه کردند. عامل اول که سبب تغییرات فنولورژیکی نابودی شده بود به تنهایی ۵۰/۵۵ درصد از کل ارتباط داده‌ها را توجیه کرد (جدول ۲). این عامل بی‌بگ‌ترین ضرایب عاملی بسته متعلق به صفات قطر ساگر مسئول بود. برای کاهش این مشکل مبتنی بر کاهش وزن بالا، وزن خشک بوته و تعداد روز تا خشک شدن کافی بود. همچنین در عامل دوم صفات نسبت ریشه به صفات هوایی. تعداد بگ‌ها یا بالا در اصلی، عمل دانه و قطر بالا و نیز عملکرد دانه در بوته دارای بگ‌ترین ضریب عاملی مثبت بودند و از اهمیت بالای پرورش بودن و لذا به نام عامل عملکرد نام گذاری گردید در این عامل صفت توزیع طول میانگین دارای ضریب عاملی مثبت بالای بود. عامل دوم نیز ۱۲/۰۹ درصد از تغییرات را توجیه کرد. در عامل سوم صفات قطر گل بالا، وزن گل بالا و تعداد زایم دانه دارای ضرایب عاملی مثبت و بالایی بودند. این عامل به نام عامل آنها توجه گردید و در نهایت رقم‌ها که در موقعیت مکانی مناسب‌تری با توجه به این دو عامل اصلی داشت با عنوان رقم مناسب استخراج گردد.

در حالت اکثریت این‌گونه دانه به روش هیبرید سینگال‌کراس ۲۰۲۱ به موفقیت عملکرد ۱۵۸/۱۱ در بوته دارای بیشترین عملکرد. در حالت که هیبرید‌های سینگال‌کراس‌های ۴۰۰۴۰۳۷ و ۷۲۱۶ نسبت ۵۷۴۷ از نظر عملکرد اختلاف معنی‌دار داشتند. هیبرید سینگال‌کراس ۴۰۳۷ از نظر صفات کوچک قطر بالا، تعداد دانه در ریف و نیز تعداد دانه در بالا، وزن خشک دانه در RIST on Monday September 21st 2020 Downloaded from ijournals.tut.ac.ir at 13:10 IRST
جدول 1. مقایسه میانگین صفات اندازه‌گیری شده در هیبریدهای ذرت

<table>
<thead>
<tr>
<th>نام ذرت</th>
<th>وزن تغییر</th>
<th>وزن خشک</th>
<th>تعداد روز طراحی</th>
<th>تعداد روز نیاز به رسانه‌گیری</th>
<th>وزن هزاره در بالا (گرم)</th>
<th>عمق چوب در بالا (میلی‌متر)</th>
<th>وزن بالا</th>
<th>رقم</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 108</td>
<td>504/080 bc</td>
<td>34/500 c</td>
<td>48/632 d</td>
<td>23/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 091</td>
<td>523/050 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 109</td>
<td>520/040 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 073</td>
<td>523/050 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 104</td>
<td>521/060 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 104</td>
<td>521/060 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 104</td>
<td>521/060 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
</tbody>
</table>

مقایسه میانگین به روش تکی در سطح احتمال 5 درصد

آدامه جدول 1. مقایسه میانگین صفات اندازه‌گیری شده در هیبریدهای ذرت

<table>
<thead>
<tr>
<th>نام ذرت</th>
<th>وزن تغییر</th>
<th>وزن خشک</th>
<th>تعداد روز طراحی</th>
<th>تعداد روز نیاز به رسانه‌گیری</th>
<th>وزن هزاره در بالا (گرم)</th>
<th>عمق چوب در بالا (میلی‌متر)</th>
<th>وزن بالا</th>
<th>رقم</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC 108</td>
<td>504/080 bc</td>
<td>34/500 c</td>
<td>48/632 d</td>
<td>23/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 091</td>
<td>523/050 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 109</td>
<td>520/040 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 073</td>
<td>523/050 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 104</td>
<td>521/060 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 104</td>
<td>521/060 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
<tr>
<td>SC 104</td>
<td>521/060 b</td>
<td>36/500 c</td>
<td>47/632 d</td>
<td>24/024 d</td>
<td>57/075 b</td>
<td>39/105 b</td>
<td>36/085 b</td>
<td>20/112 d</td>
<td>10/082 d</td>
</tr>
</tbody>
</table>

مقایسه میانگین به روش تکی در سطح احتمال 5 درصد

Downloaded from iutjournals.iut.ac.ir at 13:16 IRST on Monday September 21st 2020
جدول 2. همیشگی فوتیئی صفات اندازه‌گیری شده در هیرپیدهای ذرت

<table>
<thead>
<tr>
<th>ارتفاع بونه</th>
<th>طول ناس</th>
<th>تعداد کره</th>
<th>متوسط طول میانگین</th>
<th>طول برق بلال استیل</th>
<th>عرض برق بلال استیل</th>
<th>مساحت برق بلال</th>
<th>تعداد برق بونه</th>
<th>تعداد برق بلال بلافاصله</th>
<th>قطع ساخت</th>
<th>ارتفاع محل بلال استیل</th>
<th>طول بلال</th>
<th>تعداد ریف دانه</th>
<th>تعداد دانه در ریف</th>
<th>قطع بلال</th>
<th>عمق دانه</th>
<th>وزن بلال با غلاف</th>
<th>وزن بلال بدون غلاف</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.58</td>
<td>1</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
<td>1</td>
<td>0.13</td>
</tr>
</tbody>
</table>
مطالعه صفات زراعی و مورفولوژیک هیریده‌های ذرت از طریق تجزیه به عامل‌ها در همدان

آدام جدول ۲، همستگی فتوتیپی صفات اندازه‌گیری شده در هیریده‌های ذرت

<table>
<thead>
<tr>
<th>جدول ۲۰۰۵</th>
<th>۲۰۰۶</th>
<th>۲۰۰۷</th>
<th>۲۰۰۸</th>
<th>۲۰۰۹</th>
<th>۲۰۱۰</th>
<th>۲۰۱۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوازدهم</td>
<td>۲۰۰۵</td>
<td>۲۰۰۶</td>
<td>۲۰۰۷</td>
<td>۲۰۰۸</td>
<td>۲۰۰۹</td>
<td>۲۰۱۰</td>
</tr>
<tr>
<td>دوازدهم</td>
<td>۲۰۰۵</td>
<td>۲۰۰۶</td>
<td>۲۰۰۷</td>
<td>۲۰۰۸</td>
<td>۲۰۰۹</td>
<td>۲۰۱۰</td>
</tr>
<tr>
<td>دوازدهم</td>
<td>۲۰۰۵</td>
<td>۲۰۰۶</td>
<td>۲۰۰۷</td>
<td>۲۰۰۸</td>
<td>۲۰۰۹</td>
<td>۲۰۱۰</td>
</tr>
</tbody>
</table>

آدام جدول ۲، همستگی فتوتیپی صفات اندازه‌گیری شده در هیریده‌های ذرت

<table>
<thead>
<tr>
<th>جدول ۲۰۰۵</th>
<th>۲۰۰۶</th>
<th>۲۰۰۷</th>
<th>۲۰۰۸</th>
<th>۲۰۰۹</th>
<th>۲۰۱۰</th>
<th>۲۰۱۱</th>
</tr>
</thead>
<tbody>
<tr>
<td>دوازدهم</td>
<td>۲۰۰۵</td>
<td>۲۰۰۶</td>
<td>۲۰۰۷</td>
<td>۲۰۰۸</td>
<td>۲۰۰۹</td>
<td>۲۰۱۰</td>
</tr>
<tr>
<td>دوازدهم</td>
<td>۲۰۰۵</td>
<td>۲۰۰۶</td>
<td>۲۰۰۷</td>
<td>۲۰۰۸</td>
<td>۲۰۰۹</td>
<td>۲۰۱۰</td>
</tr>
<tr>
<td>دوازدهم</td>
<td>۲۰۰۵</td>
<td>۲۰۰۶</td>
<td>۲۰۰۷</td>
<td>۲۰۰۸</td>
<td>۲۰۰۹</td>
<td>۲۰۱۰</td>
</tr>
</tbody>
</table>

بولان تام گذاری شد. زینانی و همکاران (۱۴) نیز وجود عامل‌های
چون خصوصیات فنولولیگی که می‌تواند در تغییرات واریانس کل یا توجه کرده از ۱۴
درصد از کل واریانس را توجه کرد و در آن نهایا صفت
تعداد بولان در بونه دارای ضریب عامل بیولا بود به تام عامل تعداد

ْ۰۵
جدول ۳. نتایج تجزیه عاملی و میزان ضریب عاملی صفات در هر عامل

<table>
<thead>
<tr>
<th>عامل عاملی</th>
<th>صفات</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ارتفاع بونه</td>
</tr>
<tr>
<td>۰/۱۸۵</td>
<td>۰/۸۶۶</td>
</tr>
<tr>
<td>۰/۱۷۵</td>
<td>۰/۷۲۶</td>
</tr>
<tr>
<td>۰/۱۵۴</td>
<td>۰/۷۲۶</td>
</tr>
<tr>
<td>۰/۱۳۵</td>
<td>۰/۹۷۱</td>
</tr>
<tr>
<td>۰/۱۱۵</td>
<td>۰/۷۷۱</td>
</tr>
<tr>
<td>۰/۹۵۵</td>
<td>۰/۸۶۷</td>
</tr>
<tr>
<td>۰/۷۴۵</td>
<td>۰/۸۶۷</td>
</tr>
<tr>
<td>۰/۵۴۵</td>
<td>۰/۸۶۷</td>
</tr>
<tr>
<td>۰/۳۴۵</td>
<td>۰/۸۶۷</td>
</tr>
<tr>
<td>۰/۱۴۵</td>
<td>۰/۸۶۷</td>
</tr>
<tr>
<td>۰/۰۹۹</td>
<td>۰/۸۶۷</td>
</tr>
<tr>
<td>۰/۰۹۹</td>
<td>۰/۸۶۷</td>
</tr>
</tbody>
</table>

میزان واریانس تجمعی (%): ۵۷.۵
با توجه به این که دو عامل اصلی اول در مجموع ۲۰/۰۹ درصد از گسترش اولین و دومین داده‌ها را به خود اختصاص داده بودند، به مخاطرات محورهای مختلف اول، انتخاب گردیدند و موقعیت ارقام روي این مدل حدود مختصات بیان کننده مبنا همیشه و مقدار توجهی صفات ارقام توسیع این دو عامل می‌باشد. است به‌این‌جا ۶۴۳/۷۴ به‌دور تغییرات واریانس داده‌ها را به‌خود اختصاص داده و منحنی‌های کاهشی از قدیم این موقعیت ارقام روز از نظر‌های مختصات بیان کننده مبنا همیشه و مقدار توجهی صفات ارقام توسیع این دو عامل می‌باشد. است به‌این‌جا ۶۴۳/۷۴ به‌دور تغییرات واریانس داده‌ها را به‌خود اختصاص داده و منحنی‌های کاهشی از قدیم این موقعیت ارقام روز از نظر‌های مختصات بیان کننده مبنا همیشه و مقدار توجهی صفات ارقام توسیع این دو عامل می‌باشد. است به‌این‌جا ۶۴۳/۷۴ به‌دور تغییرات واریانس داده‌ها را به‌خود اختصاص داده و منحنی‌های کاهشی از قدیم این موقعیت ارقام روز از نظر‌های مختصات بیان کننده مبنا همیشه و مقدار توجهی صفات ارقام توسیع این دو عامل می‌باشد. است به‌این‌جا ۶۴۳/۷۴ به‌دور تغییرات واریانس داده‌ها را به‌خود اختصاص داده و منحنی‌های کاهشی از قدیم این موقعیت ارقام روز از نظر‌های مختصات بیان کننده مبنا همیشه و مقدار توجهی صفات ارقام توسیع این دو عامل می‌باشد. است به‌این‌جا ۶۴۳/۷۴ به‌دور تغییرات واریانس داده‌ها را به‌خود اختصاص داده و منحنی‌های کاهشی از قدیم این موقعیت ارقام روز از نظر‌های مختصات بیان کننده مبنا همیشه و مقدار توجهی صفات ارقام توسیع این دو عامل می‌باشد. است به‌این‌جا ۶۴۳/۷۴ به‌دور تغییرات واریانس داده‌ها را به‌خود اختصاص داده و منحنی‌های کاهشی از قدیم این موقعیت ارقام روز از نظر‌های مختصات بیان کننده مبنا همیشه و مقدار توجهی صفات ارقام توسیع این دو عامل می‌باشد. است به‌این‌جا ۶۴۳/۷۴ به‌دور تغییرات واریانس داده‌ها را به‌خود اختصاص داده و منحنی‌های کاهشی از قدیم این موقعیت ارقام روز از نظر‌های مختصات بیان کننده مبنا همیشه و مقدار توجهی صفات ارقام توسیع این دو عامل می‌باشد. است به‌این‌جا ۶۴۳/۷۴ به‌دور تغییرات واریانس داده‌ها را به‌خود اختصاص داده و منحنی‌های کاهشی از قدیم این موقعیت ارقام روز از نظر‌های مختصات بیان کننده مبنا H
منابع مورد استفاده

1. احمدزاده، ا. ۱۳۸۶. تغییر بهترین شاخص مقاومت به خشکی در لایه‌های بزرگ‌تری ذرت. پایان‌نامه کارشناسی ارشد اصلاح نباتات، دانشگاه خوارزمی، تهران.

2. رضویان، خوشریزی، ع. ک. کاهشی می‌باشد و غ. گیلان. ۱۳۸۱. بررسی رابطه عملکرد دانه با صفات کمی از طریق تجزیه به عامل‌ها در سویا (Glycine max L.). خلاصه مقالات هفت‌مین کنگره علوم زراعت و اصلاح نباتات. مؤسسه تحقیقات اصلاح و بهبود نهال و برند، کرج.

3. رفیعی، م. ق. نورمحمدی، م. کریمی و ه. ا. نادیان. ۱۳۸۵. تحلیل چند متغیره عملکرد اجزای عملکرد و شاخص برداشت ذرت. خلاصه مقالات هفت‌مین کنگره علوم زراعت و اصلاح نباتات. مؤسسه تحقیقات اصلاح و بهبود نهال و برند، کرج.

4. زینالی، ج. ع. نصرآبادی، ه. حسن‌زاده، ر. چهرگان و م. سپیدست. ۱۳۸۴. تجزیه به عامل‌ها در ارقام ذرت دانه‌ای. مجله علوم زراعی ایران ۲۳ (۱) ۸۹۵-۹۰۷.

5. فرزش، ب. م. ویزاده، ر. چهرگان و د. حسن پناه. ۱۳۷۹. تغییر همبستگی بین عملکرد و اجزای آن در هیری‌ده‌ای فوق‌العاده و خیلنی زودرس ذرت دانه‌ای به روش تجزیه علی‌مطیع. ششمین کنگره زراعت و اصلاح نباتات ایران، دانشگاه مازندران.

6. عرب اول، م. و ع. ابراهیمی. ۱۳۸۱. بررسی تجزیه به مؤلفه‌های اصلی بر روی عملکرد اجزای عملکرد و خصوصیات کیفی ارقام کیپا در تاریخ کاشت‌های مختلف. مؤسسه تحقیقات اصلاح و بهبود نهال و برند، کرج.

7. مظاهری، م. ۱۳۸۲. بررسی تنویع زندگی ارقام مختلف برای ارزیابی خصوصیات مورفولوژیکی. پایان نامه کارشناسی ارشد اصلاح نباتات، دانشگاه خوارزمی، دانشگاه گیلان.

