اثر برهمکنش نیتروژن و مواد آلی بر رشد و عملکرد گندم دیم (Triticum aestivum)

سید عبدالرضا کاظمی‌تیمی، حسین غدیری، نجفی علی، کریمیان، على اکبر کامگار حقیقی و مونچر خردناه

(تاریخ دریافت: 8/2/1468؛ تاریخ پذیرش: 8/11/1468)

چکیده

به مفهوم بررسی برهمکنش نیتروژن و مواد آلی بر رشد و عملکرد گندم دیم، آزمایشی در سال‌های 1384 و 1385 در ایستگاه تحقیقاتی دانشکده کشاورزی دانشگاه شیراز اجرا گردید. مطالعه اصلی بررسی نیتروژن در سه سطح (صفر 40 و 80 کیلوگرم نیتروژن خالص در هکتار) و فاکتورهای فرعی سه نوع ماده آلی شامل پسماند گیاهی به میزان ۸۵ و ۱۵۰ کیلوگرم در هکتار، پسماند گیاهی (طیش) بین به میزان ۱۰ و ۳۰ نت هکتار و کمبوست ضایعات سه‌تایی به میزان ۱۰ و ۱۵ نت هکتار (مقدار ۷۰۰ و ۳۰۰) پوده به تیمار شاهد (فناکه گونه ماده افزودنی) مقایسه گردیدند. نتایج نشان داد عملکرد دانه گندم با افزایش نیتروژن از صفر به ۴۰ و از ۴۰ به ۸۰ کیلوگرم در هکتار به طور معنی‌داری افزایش یافته است. از این‌جمله افزایش دانه گندم دیم به تیمار ۱۰۰ درصد کمبوست با میزان ۲۳ درصد کمبوست با تیمار شاهد افزایش داشت. نتایج به دست آمده از اثر برهمکنش مواد آلی و نیتروژن (میانگین دو سال) نشان داد که در تیمار ۱۰۰ درصد کمبوست با افزایش نیتروژن از صفر به ۴۰ کیلوگرم در هکتار، عملکرد دانه گندم به طور معنی‌داری افزایش یافته است. نتایج به دست آمده از تیمار ۸۰ کیلوگرم نیتروژن خالص در هکتار نشان داد که در تیمار ۸۰ کیلوگرم نیتروژن خالص در هکتار به طور معنی‌داری افزایش یافته است. این نتایج به دست آمده از تیمار آب موجود در خاک نشان داد که هر دو سالیاً افزایش صرب مواد آلی در مقایسه به تیمار شاهد، مقدار آب موجود در خاک (صفر تا ۳۰ سانتی‌متر) و افزایش داده‌گیری به طرفین در نتیجه تاثیر گونه‌داری آب خاک داشت.

واژه‌های کلیدی: گندم دیم، نیتروژن، مواد آلی، کمبوست، عملکرد دانه، ظرفیت نگهداری آب خاک

1. به ترتیب دانشجوی دکتری، استاد و استادیار زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شیراز
2. استاد کشاورزی، دانشگاه شیراز
3. دانشیار اپاریه، دانشکده کشاورزی، دانشگاه شیراز
ghadiri@shirazu.ac.ir: پست الکترونیکی:

*: مسئول مکاتبات
فاعلیت چشمگیر مهمان‌های آنلاین علی خواه‌های ایران بوده است (8). از طرفی کاربردهایی از این کوده‌های شیمیایی در کشاورزی باعث ایجاد مشکل‌های زیست محیطی از جمله تخریب فیزیکی خاک، عدم نوار ناکاملی خاک و یادگیری (Eutrophication) شده است (19). شیلگر و پایان (27) نشان دادند، زیر خاک کربن بخش حیاتی از پسماندهای کیاهی توسط گازهای فلزی مواد افزایش نمی‌دهد. می‌تواند حاصل خرابی خاک و در نهایت افزایش کمک بینهایت در شرایط دم می‌شود. افزایش ماده آهی به طرف مختلف مثل بکرگاند پسماندهای خاک و بینهایت بکارگری ضایعات آن تولید شده تا در نهایت این انباشتهای ممکن برای میکوسس سالیان 1/5 میلیون تن کمک‌بینهایت خاک را تولید کند. کمک کافی تولید خاک به افزایش مواد آلی خاک‌های زراعی محیط این می‌باشد. کمک‌بینهایت از طرف افزایش کارایی گیاهی در استفاده از آب و همچنین راه‌سازی عناصر غذایی بیب افزایش به وعلی نگارگری گیاهی می‌شود (13). ورده‌گویس و همکاران (25) با مصرف کمک‌بینهایت حاصل از ضایعات جامد (50 و 100 تن در هکتار) در یک خاک لومی رست دریافتند که کمک‌بینهایت گیاهی می‌شود. 150 کیلوگرم کمک‌بینهایت دریافت کرده بودند. کارایی و همکاران (19) با مقیاس تأثیر مصرف کوده‌های معدنی و آلی و مخلوط این دو روش جذب کمک‌بینهایت و عملکرد دانه دریافتند که جذب کمک‌بینهایت از کوده‌های معدنی کمک‌بینهایت دریافت کرده بودند بیش از کردن بود که کود یا مخلوط آلی و معدنی دریافت کرده بودند ولی تفاوت معنی‌داری در عملکرد دانه تیمارها به‌دست نماید و این مورد بود که مورد اوردن عملکرد مطلوب با مدیریت استفاده از ماده آلی کمک‌بینهای دریافت کمک‌بینهای محیطی است که می‌تواند با نیاز الی‌های
جدول 1. میزان بارندگی در ماه‌های مختلف سال‌های زراعی 82-83 و 84-85 و 85-86 و 86-87 و 87-88

<table>
<thead>
<tr>
<th>میزان بارندگی (میلی متر)</th>
<th>ماه</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>سال 82-83</td>
</tr>
<tr>
<td>مهر</td>
<td>945</td>
</tr>
<tr>
<td>آبان</td>
<td>0</td>
</tr>
<tr>
<td>اذر</td>
<td>296</td>
</tr>
<tr>
<td>دی</td>
<td>126</td>
</tr>
<tr>
<td>بهمن</td>
<td>85</td>
</tr>
<tr>
<td>استفاده</td>
<td>655</td>
</tr>
<tr>
<td>فروردین</td>
<td>0</td>
</tr>
<tr>
<td>آوریل</td>
<td>7</td>
</tr>
<tr>
<td>خرداد</td>
<td>15</td>
</tr>
<tr>
<td>تیر</td>
<td>0</td>
</tr>
<tr>
<td>مرداد</td>
<td>0</td>
</tr>
<tr>
<td>شهریور</td>
<td>0</td>
</tr>
<tr>
<td>جمع کل</td>
<td>726</td>
</tr>
</tbody>
</table>

ساده‌ترین جذب تیتر-وند همراهان گردیده. ارهارت و همکاران (12) در مورد نقش‌گذاری‌ها و بهبود ماهی‌دانی در کشتی‌های مه‌پر شده است. بررسی‌های اخیر نشان داده است که تفاوت‌ها نسبت به انسان است. مورد نیاز گیاهان زراعی با استفاده از کودهای آلی می‌تواند نقش کلیدی در نگهداری حیات خانکی پایداری کشاورزی ایجاد نماید (12، 132 و 282). این پروژه به منظور بررسی تأثیر برهمکنش تیتر-وند و سه نوع ماه آلی بر رشد و عملکرد گندم دیم اجرا گردید.

مواد و روش‌ها

این آزمایش در دانشگاه کشاورزی دانشگاه شیراز واقع در 18 کیلومتری شمال شرقی شهر شیراز با طول جغرافیایی 52.87 درجه، عرض جغرافیایی 29.46 درجه و ارتفاع 180 متر از سطح دریا با میانگین دم ساله بارندگی 400 میلی متر (جدول 1) و 726 میلی متر در سال‌های زراعی 62 و 756 میلی متر در سال‌های زراعی 52 و 756 میلی متر انجام شد. به‌صورت آزمایشی کرته‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی با 3 نمونه بر اساس 3 تکرار اجرا شد. در این برای جذب تیتر-وند همراهان گردیده. ارهارت و همکاران (12) در مورد نقش‌گذاری‌ها و بهبود ماهی‌دانی در کشتی‌های مه‌پر شده است. بررسی‌های اخیر نشان داده است که تفاوت‌ها نسبت به انسان است. مورد نیاز گیاهان زراعی با استفاده از کودهای آلی می‌تواند نقش کلیدی در نگهداری حیات خانکی پایداری کشاورزی ایجاد نماید (12، 132 و 282). این پروژه به منظور بررسی تأثیر برهمکنش تیتر-وند و سه نوع ماه آلی بر رشد و عملکرد گندم دیم اجرا گردید.

مواد و روش‌ها

این آزمایش در دانشگاه کشاورزی دانشگاه شیراز واقع در 18 کیلومتری شمال شرقی شهر شیراز با طول جغرافیایی 52.87 درجه، عرض جغرافیایی 29.46 درجه و ارتفاع 180 متر از سطح دریا با میانگین دم ساله بارندگی 400 میلی متر (جدول 1) و 726 میلی متر در سال‌های زراعی 62 و 756 میلی متر در سال‌های زراعی 52 و 756 میلی متر انجام شد. به‌صورت آزمایشی کرته‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی با 3 نمونه بر اساس 3 تکرار اجرا شد. در این برای جذب تیتر-وند همراهان گردیده. ارهارت و همکاران (12) در مورد نقش‌گذاری‌ها و بهبود ماهی‌دانی در کشتی‌های مه‌پر شده است. بررسی‌های اخیر نشان داده است که تفاوت‌ها نسبت به انسان است. مورد نیاز گیاهان زراعی با استفاده از کودهای آلی می‌تواند نقش کلیدی در نگهداری حیات خانکی پایداری کشاورزی ایجاد نماید (12، 132 و 282). این پروژه به منظور بررسی تأثیر برهمکنش تیتر-وند و سه نوع ماه آلی بر رشد و عملکرد گندم دیم اجرا گردید.

مواد و روش‌ها

این آزمایش در دانشگاه کشاورزی دانشگاه شیراز واقع در 18 کیلومتری شمال شرقی شهر شیراز با طول جغرافیایی 52.87 درجه، عرض جغرافیایی 29.46 درجه و ارتفاع 180 متر از سطح دریا با میانگین دم ساله بارندگی 400 میلی متر (جدول 1) و 726 میلی متر در سال‌های زراعی 62 و 756 میلی متر در سال‌های زراعی 52 و 756 میلی متر انجام شد. به‌صورت آزمایشی کرته‌های خرد شده در قالب طرح بلوک‌های کامل تصادفی با 3 نمونه بر اساس 3 تکرار اجرا شد. در این برای جذب تیتر-وند همراهان گردیده. ارهارت و همکاران (12) در مورد نقش‌گذاری‌ها و بهبود ماهی‌دانی در کشتی‌های مه‌پر شده است. بررسی‌های اخیر نشان داده است که تفاوت‌ها نسبت به انسان است. مورد نیاز گیاهان زراعی با استفاده از کودهای آلی می‌تواند نقش کلیدی در نگهداری حیات خانکی پایداری کشاورزی ایجاد نماید (12، 132 و 282). این پروژه به منظور بررسی تأثیر برهمکنش تیتر-وند و سه نوع ماه آلی بر رشد و عملکرد گندم دیم اجرا گردید.
اهمیت‌های فاکتورهای اصلی سطح صفر: ۴۰ و ۸۰ کیلوگرم برای تهیه خاک مورد استفاده در کارکرد اول برجام و شرایط محیطی بسیار معنی‌دار بوده و ۱۰۰ کیلوگرم برای تهیه خاک مورد استفاده در کارکرد دوم برجام و شرایط محیطی بسیار معنی‌دار بوده.

در کنار اینکه بستگی به صورت نسبی دارد، بایستی نشان دهنده باشد که عناصری از این روش‌ها به وسیله گزارشگران و سایر افراد باید به صورت صحیح و هوشمند تهیه گردد. این موضوع به وسیله گزارشگران و سایر افراد باید به صورت صحیح و هوشمند تهیه گردد.
جدول 2. تأثیر نیتروژن بر عملکرد و اجزای عملکرد دانه و برخی صفات اندازه‌گیری شده گندم (میانگین دو سال)

<table>
<thead>
<tr>
<th>ارتفاع (cm)</th>
<th>عملکرد بیولوژیک (kg/ha)</th>
<th>وزن هزار دانه (gr)</th>
<th>تعداد سبله در سطح</th>
<th>عملکرد دانه (kg/ha)</th>
<th>نیتروژن (Kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50/55B</td>
<td>245/12/18</td>
<td>37/56</td>
<td>8/51</td>
<td>303/28/18</td>
<td>41/6/8/4</td>
</tr>
<tr>
<td>51/58B</td>
<td>268/8/58</td>
<td>35/38</td>
<td>9/39</td>
<td>335/33/8</td>
<td>40/7/6/4</td>
</tr>
<tr>
<td>55/52A</td>
<td>334/1/34</td>
<td>40/83</td>
<td>10/85</td>
<td>357/8/3</td>
<td>8/0/0</td>
</tr>
</tbody>
</table>

تقویت اعداد دادای حروف مشترک در هر ستون از نظر آماری در سطح 5% آزمون دانکن معنی دارد نیست.

جدول 3. تأثیر مواد آلي بر عملکرد و اجزای عملکرد دانه و برخی صفات اندازه‌گیری شده گندم (میانگین دو سال)

<table>
<thead>
<tr>
<th>ارتفاع (cm)</th>
<th>عملکرد بیولوژیک (kg/ha)</th>
<th>وزن هزار دانه (gr)</th>
<th>تعداد سبله در سطح</th>
<th>عملکرد دانه (kg/ha)</th>
<th>مواد آلي</th>
</tr>
</thead>
<tbody>
<tr>
<td>55/1AB</td>
<td>286/3/8</td>
<td>34/42</td>
<td>9/45</td>
<td>347/28/18</td>
<td>شاهد</td>
</tr>
<tr>
<td>50/3AB</td>
<td>283/6/8</td>
<td>35/23</td>
<td>9/62</td>
<td>334/24/8</td>
<td>پسمانه نگدنم (کپسول)</td>
</tr>
<tr>
<td>51/5B</td>
<td>271/6/4</td>
<td>36/8</td>
<td>8/79</td>
<td>324/6/8</td>
<td>پسمانه نگدنم (کپسول)</td>
</tr>
<tr>
<td>52/9B</td>
<td>185/5/8</td>
<td>88/34</td>
<td>6/52</td>
<td>335/5/8</td>
<td>پسمانه نگدنم (کپسول)</td>
</tr>
<tr>
<td>53/3B</td>
<td>284/5/8</td>
<td>43/8</td>
<td>7/71</td>
<td>325/4/8</td>
<td>کمبوست (کپسول)</td>
</tr>
<tr>
<td>50/2B</td>
<td>316/5/8</td>
<td>37/5</td>
<td>6/77</td>
<td>328/4/8</td>
<td>کمبوست (کپسول)</td>
</tr>
<tr>
<td>55/5A</td>
<td>313/5/8</td>
<td>16/9</td>
<td>4/71</td>
<td>327/5/8</td>
<td>کمبوست (کپسول)</td>
</tr>
</tbody>
</table>

تقویت اعداد دادای حروف مشترک در هر ستون از نظر آماری در سطح 5% آزمون دانکن معنی دارد نیست.

کرد 3. ارزیابی از میزان صفر به 80 کیلوگرم نیتروژن در هکتار معنی دارد (جدول 3). طلاپی و حق پرس (2) دریافتند که کربن کربن مواد نیتروژن باعث افزایش معنی داری در عملکرد دانه و عملکرد بیولوژیک وزن دانه و ارتفاع گیاه می‌شود. بهطور کلی در مقایسه با تیمار شاهد، حداکثر افزایش گیاه در تیمار 100 درصد پسمانه نگدنم بهدست آمده که بهطور معنی داری در مقایسه با تیمار 100 درصد کمبوست کاهش نشان داد و حداکثر افزایش گیاه در تیمار 100 درصد کمبوست بهدست آمده. بهطور کلی از بین مواد آلي صرف کمبوست بهترین افراشیه را در افزایش گیاه نمود (جدول 3).

عملکرد بیولوژیک

نتایج به‌دست آمده از اثر برهمکنش مواد آلي و سطوح نیتروژن (میانگین دو سال) نشان داد که حداکثر عملکرد بیولوژیک گندم در سطح صفر کیلوگرم نیتروژن خالص در

465
عکس و نمونه کشاورزی و محیطی / سال دوازدهم / شماره چهل و هفتم (ب) / پاییز 1387

شکل 1 اثر برهمکنش سطح نیتروژن و مواد آلی بر عملکرد بیولوژیک گندم دیم (مانگینی در سال)

مانگینی در طول مدار خورشید مشابه چکچک در هر روز و حروف بزرگ در هر سیون اختلاف معنی‌دار تدارک (مانگین 1/5)

افزایش معنی‌دار در تعداد سبیله در 40 تعداد سبیله شد. بیلیو و همکاران (14) طی آزمایشی دریافتند که افزودن سطح مختلف
نیتروژن (صرف، 0.5 و 15 کیلوگرم در هکتار) باعث ایجاد تفاوت معنی‌داری در تعداد سبیله در 40 تعداد سبیله شد.
ولی بین سطوح 0.5 و 15 کیلوگرم نیتروژن در هکتار تفاوت معنی‌داری وجود نداشت. عدلاند و همکاران (5) طی آزمایشی
نشان دادند با افزایش میزان نیتروژن از صفر به 60 کیلوگرم در هکتار تعداد سبیله گندم در متر مربع افزایش ییدا کرد. گویش و
همکاران (16) نشان دادند هر کلی تعداد دانه در سبیله و تعداد سبیله در متر مربع از دو تکرار اجرای عملکرد دانه به
خفشکی می‌باشند.

نتایج به دست آمده از اثر برهمکنش مواد آلی و سطح
نیتروژن (مانگینی دو سال) نشان داد که تعداد گندم با افزایش نیتروژن از
100 درصد و 50 درصد پس از کروم با افزایش نیتروژن از
صرف به 80 کیلوگرم در هکتار تعداد سبیله به‌طور معنی‌داری افزایش ییدا نموده ولی در سایر تکرارها اختلاف معنی‌داری بین
سطوح 40 و 80 کیلوگرم نیتروژن خالص در هکتار به‌دست
نیامد و این خود نشان دهنده نقش مثبت چایکریتی مواد آلی

هکتار و 100 درصد پس از کروم و حداکثر آن در سطح
کیلوگرم در هکتار و 100 درصد کمپوسه به‌دست آمد
(شکل 1). به‌طور کلی در مقایسه با تمایل شاهد، حداکثر
عملکرد بیولوژیک گندم در تیمار 100 درصد کمپوسه به‌دست
آمد ولی بین تیمارهای کمپوسه در هردو سطح 0.5 و 100
درصد و نیز پس از کروم ریشه شریپ بیان در هردو میزان 50 و
100 درصد تفاوت معنی‌داری وجود نداشت (جدول 2). به‌طور
کلی از بین مواد آلی مصرف کمپوسه بیشترین افزایش را در
عملکرد بیولوژیک گندم داشت و لیا اختلاف معنی‌داری بین
مصرف ریشه شریپ بیان نشان داد (جدول 3).

تعداد سبیله در متر مربع

نتایج به دست آمده از آزمون دانک نشان داد با افزایش میزان
نیتروژن تعداد سبیله گندم در متر مربع افزایش ییدا کرد. که این
افزایش از میزان صفر به 80 کیلوگرم نیتروژن در هکتار معنی‌دار
بود (جدول 2). رامسون و همکاران (24) با مطالعه‌ای روی
سطح مختلف نیتروژن شامل صفر، 37.5 و 75 کیلوگرم در هکتار گندم که افزایش نیتروژن موجب
تعادل دانش در سبیله گندم

نتایج نشان داد با افزایش میزان مصرف نیتروژن از صفر به ۴۰ کیلوگرم در هکتار تعداد دانه در سبیله گندم به‌طور معمولی دارای افزایش پایین‌افتد (جدول ۲). حداکثر و حداقل تعداد دانه در سبیله گندم در میزان ۸۰ (درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آمد و حداقل تعداد دانه در سنبله گندم در تیمار ۱۲۰ درصد کمیسیون به‌دهست آmad....
شکل 3. اثر برهمکنش سطوح نیترژن و مواد آلی بر تعداد دانه درجه دوم (میانگین دو سال).

میانگین دهارای حروف مشابه کوچک در هر ریف و حروف بزرگ در هر سوئین اختلاف معنی‌داری ندارند (دِکانک 5).

نشان داده که با افزایش سطح نیترژن از ۳۰ به ۶۰ کیلوگرم نیترژن در هکتار، عملکرد دانه گندم افزایش یافت. ریان و همکاران (۲۱) طی آزمایشات نشان دادند متوسط وزن دانه گندم با افزایش تعداد دانه گندم به دنبال رفت و یا به عمل افزایش نسبی تناژی دانه‌های با وزن کمتر کاهش یافت. همچنین نتایج نشان داد که در مقایسه با تیمار بدون مصرف کود با افزایش میزان مصرف نیترژن از ۱۶۰ کیلوگرم در هکتار، بیشترین تعداد دانه و کرتیپ وزن دانه بهبودی نماید. ویژه و همکاران (۲۰) گزارش کردند که افزایش نیترژن به کندم باعث ایجاد تغییرات معنی‌دار در وزن هزار دانه گندم شد. نتایج بهبودی از تأثیر مواد آلی بر وزن هزار دانه گندم نشان داد که افزودن مواد آلی مختلف تفاوت معنی‌داری در مقایسه با تیمار شاهد ایجاد نمود.

(جدول ۲)

عملکرد دانه

جدوای عملکرد دانه در سطح ۶۰ کیلوگرم نیترژن در هکتار و حداکثر عملکرد دانه در سطح صفر کیلوگرم نیترژن در هکتار به‌دست آمد (جدول ۲). نتایج نشان داد با افزایش سطح نیترژن از صفر به ۶۰ و ۸۰ کیلوگرم در هکتار، عملکرد دانه به‌طور معنی‌داری

معنی‌داری افزایش پیدا کرد. عدلات و همکاران (۵) طی آزمایشی

به ۶۰ کیلوگرم در هکتار معنی‌داری نداشتند (جدول ۲). مارتین و همکاران (۲۱) طی آزمایشات نشان دادند متوسط وزن دانه گندم با افزایش تعداد دانه گندم به دنبال رفت و یا به عمل افزایش نسبی تناژی دانه‌های با وزن کمتر کاهش یافت. همچنین نتایج نشان داد که در مقایسه با تیمار بدون مصرف کود با افزایش میزان مصرف نیترژن از ۱۶۰ کیلوگرم در هکتار، بیشترین تعداد دانه و کرتیپ وزن دانه بهبودی نماید. ویژه و همکاران (۲۰) گزارش کردند که افزایش نیترژن به کندم باعث ایجاد تغییرات معنی‌دار در وزن هزار دانه گندم شد. نتایج بهبودی از تأثیر مواد آلی بر وزن هزار دانه گندم نشان داد که افزودن مواد آلی مختلف تفاوت معنی‌داری در مقایسه با تیمار شاهد ایجاد نمود.

(جدول ۲)

عملکرد دانه

جدوای عملکرد دانه در سطح ۶۰ کیلوگرم نیترژن در هکتار و حداکثر عملکرد دانه در سطح صفر کیلوگرم نیترژن در هکتار به‌دست آمد (جدول ۲). نتایج نشان داد با افزایش سطح نیترژن از صفر به ۶۰ و ۸۰ کیلوگرم در هکتار، عملکرد دانه به‌طور معنی‌داری

معنی‌داری افزایش پیدا کرد. عدلات و همکاران (۵) طی آزمایشی
اثر برهمکنش نیتروژن و مواد آلی بر رشد و عملکرد گندم دیم

شکل ۴: اثر برهمکنش سطح نیتروژن و مواد آلی بر عملکرد دانه گندم دیم (میانگین دو سال)

میانگین‌های دارای حروف مشابه کوچک در هر رنگ و حروف بزرگ در هر سطح اختلاف معنی‌دار دانه‌دارند (داکلن ۵).

افراشید نمود (شکل ۴)، به علت دیگر، بان تیمار مصرف کمپوست سطح پایین نیتروژن مصرفی و در سایر تیمارها مقایسه با اثر نیتروژن مصرفی عملکرد دانه را به‌طور معنی‌داری افزایش داده است. به‌طور کلی مصرف نیتروژن مصرفی گندم در تیمار ۵۰۰ درصد کم‌پوست به‌سرعت افزایشی شده و در تیمارهای کمپوست در هر سطح ۵۰ و ۱۰۰ درصد و نیز مصرف ۱۰۰ درصد پسماند‌های شیرین یکان تفاوت معنی‌داری وجود نداشت (جدول ۲). افزایش و مصرف (۱) گزارش کردن که میزان عملکرد گندم با کاربرد کود آلی نسبت به شاهد افزایش نشان داد. برزگر و همکاران (۳) در مطالعه‌ای بررسی تأثیر مواد آلی مختلف (پسماند گندم، کمپوست پسماند تاکسیک و کود دامی) در مقایسه در سطح ۰ و ۱۰۰ درصد هکتار بر عملکرد گندم دریافتند. به‌طور کلی کاربرد مواد آلی به‌طور معنی‌داری عملکرد گندم را افزایش داده است. لحاظ داده‌های تأثیر مواد آلی مذکور روی عملکرد دانه گندم به ترتیب افزایش ۱۴ درصد و در مورد عملکرد ماده خشک به ترتیب ۱۰ و ۱۷ درصد بیش از شاهد به‌سرعت آمد.

تأثیر مواد آلی بر روند تغییرات آب موجود در خاک

داده‌های به‌عنوان میانگین دو سال آزمایش با بررسی تأثیر مواد آلی بر روند تغییرات آب موجود در خاک نشان داد که در مقایسه با تیمار شاهد، مصرف مواد آلی مقدار آب موجود در خاک (سکر تا ۰.۵ سانتی‌متر) را افزایش داد. این نشان می‌دهد که مصرف کمپوست تأثیر بیشتری بر ذخیره آب موجود در خاک داشت. (شکل ۴ و ۵). همچنین این سطح مختلف مصرف مواد آلی مصرف کمپوست به میزان ۱۰۰ درصد بیشترین ذخیره آب موجود در هر دوره عمیق‌تر بود.

رودریگوس و همکاران (۲۵) با مصرف کمپوست حاصل از ضایعات جامد (۵۰ و ۱۰۰ تن در هکتار) در یک خاک ژوئی رش در آرانتند که عملکرد گندم به‌سرعت افزایشی که تیمار کمپوست اعمال شده است بالا مقاوم بود که به‌طور کلی مصرف ۷۵ یا ۱۵۰ کیلوگرم نیتروژن معدنی دریافت کرده‌اند. سینگک و شرم (۲۷) طی آزمایشی نشان دادند که زمانیکه از منابع اصلی استفاده گردید افزایش نیتروژن به‌صورت مخلوط با آن، باعث افزایش عملکرد دانه گندم شد.
مواد آلی

شکل ۵. اثر سطوح مواد آلی بر مقدار آب موجود خاک (سانتی‌متر) در دو عمق اندازه‌گیری شده

مواد آلی

شکل ۶. اثر سطح مواد آلی بر مقدار آب موجود خاک در عمق صفر تا ۶ سانتی‌متر (میانگین دو سال)

مواد آلی

شکل ۷. تأثیر مواد آلی بر میزان آب موجود خاک در عمق صفر تا ۶ سانتی‌متر (میانگین دو سال)
منابع مورد استفاده
1. افزینی، آ. و. سعادت، 1389. تعیین مناسب‌ترین میوه و مقدار مصرف کود آئی در زراعت گندم در شاهرود. خلاصه مقالات.
2. نهمین کنگره علوم کود ایران، تهران.
3. حق نیاپوش. و. ع. کوچکی. 1380. استفاده از کودهای آئی تولید پایدار چند گیاه زراعی، مجموعه مقالات هفتمین کنگره علوم کود ایران، شهر کرد.
4. داوریزاده، ع. حق نیاپوش، و. محمدیان. 1381. تأثیر کود کمپستری و دامی در تولید چغندر فند. مجله علوم و صنایع کشاورزی 16(2): 75-87.
5. طالابی، آ. و. حق نیاپوش، 1387. اثر مقدار مختلف نیتروژن بر عملکرد دانه و جذب نیتروژن بریسمی و فسفر در بخشی از لاک‌های محصول گندم. مجله حال و بدر 15(156-159).
7. کنابی. م. 1375. وضعیت مواد آلی در خاک‌های ایران و نقش کود کمپستری. خلاصه مقالات پنج‌مین کنگره علوم خاک ایران، مشهد.
8. لطفی، ن. و. محمدیان. 1377. بررسی اثر زمان و مقدار مصرف کود نیتروژن بر روی عملکرد دانه سه رقم کود در شرایط دم. مجله علوم کشاورزی و منابع طبیعی 1(1): 78-82.