Islamic Azad University of tehran North Branch , tayari@iauk.ac.ir
Abstract: (2794 Views)
The discharge coefficient of labyrinth weirs increases with increasing the crest length in a certain width range. The present research was carried out in a laboratory flume with a length of 8 m, a width of 0.6 m, and a height of 0.6 m. The discharge coefficient of two-cycle symmetric and asymmetric rectangular labyrinth weirs was experimentally measured. The dimensional analysis by the Buckingham π theorem indicated that the discharge coefficient was dependent on Se, B/Wavg, Ht/P, and WL/WR. According to the results, the discharge coefficient decreased with increasing the hydraulic head in the symmetric and asymmetric labyrinth weirs and the linear weir. Asymmetric labyrinth weirs with a WL/WR of 2.05 outperformed symmetric labyrinth weirs with a WL/WR of 1. Quantitatively, the discharge coefficient of the labyrinth weir with a B/Wavg of 3.1 was respectively 21% and 94% higher than that with a B/Wavg of 2.93 and 2.76. The discharge coefficient of the labyrinth weir with a WL/WR of 2.05 was 10-27% higher than that with a WL/WR of 1. The discharge coefficient of the linear weir was 60-250% higher than that of labyrinth weirs.
Type of Study:
Research |
Subject:
Ggeneral Received: 2020/10/5 | Accepted: 2021/04/20 | Published: 2022/03/1