8 نتیجه برای شعبانلو
محمد جواد اسدی، سعید شعبانلو، محسن نجارچی، محمد مهدی نجفی زاده،
جلد 23، شماره 3 - ( علوم آب و خاک - علوم و فنون کشاورزی و منابع طبیعی- پاییز 1398 )
چکیده
در این مطالعه، ضریب دبی روزنه های جانبی دایرهای با استفاده از یک روش ترکیبی جدید، مدلسازی شد. ترکیبات انجام شده در این مطالعه، به دو قسمت تقسیم شد: 1) ترکیب دو الگوریتم بهینهسازی ازدحام ذرات (PSO) و الگوریتم ژنتیک (GA) و ارائه الگوریتم PSOGA ، 2) استفاده از الگوریتم ترکیبی PSOGA جهت بهینه سازی شبکه انفیس (ANFIS) و ارائه روش ANFIS-PSOGA. با شناخت پارامترهای مؤثر بر ضریب دبی روزنه های جانبی دایروی، 11 ترکیب مختلف ارائه شد. تحلیل حساسیت انجام شده با استفاده از ANFIS، نشان داد که عدد فرود و نسبت عمق جریان به قطر روزنه (Ym/D) مؤثرترین پارامترها در مدلسازی ضریب دبی شناسایی شدند. همچنین، بهترین ترکیب در براورد ضریب دبی استفاده از متغیرهای فرود جریان (Fr)، نسبت عرض کانال اصلی به قطر روزنه جانبی (B/D)، نسبت ارتفاع تاج روزنه به قطر روزنه (W/D) و نسبت عمق جریان به قطر روزنه (Ym/D) بود. مقادیر MAPE، RMSE و R برای این مدل، به ترتیب برابر 0/021، 0/20 و 0/871 بهدست آمد. پس از انتخاب بهترین ترکیب، عملکرد روش ANFIS-PSOGA با دو روش ANFIS and ANFIS-PSO، مقایسه شد. نتایج نشان داد که روش ANFIS-PSOGA برای مدلسازی ضریب دبی، دارای خطای کمتری بود.
فریبرز یوسفوند، سعید شعبانلو،
جلد 23، شماره 4 - ( علوم آب و خاک - علوم و فنون کشاورزی و منابع طبیعی- زمستان 1398 )
چکیده
در این مطالعه، سطح آب زیرزمینی در منطقه سراب قنبر- واقع در جنوب شهر کرمانشاه، کشور ایران- با استفاده از مدل موجک ماشین آموزش نیرومند خودتطبیقی (WA-SAELM) تخمین زده شد. برای توسعه مدل عددی از روش هوش مصنوعی و جدید ماشین آموزش نیرومند خودتطبیقی و تبدیل موجک استفاده شد. در ابتدا، با استفاده از تابع خودهمبستگی، خودهمبستگی نسبی و تأخیرهای مؤثر، هشت مدل مختلف SAELM و WA-SAELM متمایز توسعه داده شدند، سپس مقادیر تراز آب زیرزمینی چاه مشاهداتی نرمالسازی شدند. در ادامه، با تجزیهوتحلیل نتایج مدلسازی، بهینهترین خانواده موجک برای مدلسازی انتخاب شد. با ارزیابی نتایج مدلهای SAELM و WA-SAELM مشخص شد که مدلهای WA-SAELM در مقایسه با مدلهای SAELM مقادیر تابع هدف را با دقت بیشتری تخمین زدند. سپس مدل برتر بر اساس دقت آن در پیشبینی تراز آب زیرزمینی انتخاب شد. بهعنوان مثال در حالت تست، مقادیر R، MAE و NSC برای مدل برتر بهترتیب برابر 995/0، 988/0 و 990/0 محاسبه شدند. همچنین برای مدلهای عددی، تحلیل عدم قطعیت انجام و نشان داده شد که مدل برتر مقادیر مشاهداتی را کمتر از مقدار واقعی تخمین زده است.
امیر علیزاده، بهروز یعقوبی، سعید شعبانلو،
جلد 24، شماره 2 - ( علوم آب و خاک- تابستان 1399 )
چکیده
در این مطالعه، ضریب دبی سرریزهای لبه تیز واقع بر کانالهای دایرهای با استفاده از مدلهای انفیس و انفیس-کرم شبتاب شبیهسازی شد. همچنین برای بررسی افزایش قابلیت مدلهای عددی از شبیهسازیهای مونتکارلو استفاده شد. این درحالی است که روش اعتبارسنجی ضربدری برای صحتسنجی مدلهای عددی بهکار گرفته شد. با توجه به پارامترهای ورودی، چهار مدل انفیس و انفیس-کرم شبتاب معرفی شد. تجزیهوتحلیل نتایج عددی نشان میدهد که مدل برتر ضریب دبی را بهعنوان تابعی از عدد فرود (Fr) و نسبت عمق جریان روی تاج سرریز به ارتفاع تاج سرریز (h/P) شبیهسازی کرد. مقادیر MARE، RMSE و R برای مدل برتر بهترتیب برابر 0/001، 0/002 و 0/999 محاسبه شد. این درحالی است که حداکثر مقدار MARE برای این مطالعه کمتر از 2 درصد بود.
محمد معین فلاحی، بهروز یعقوبی، فریبرز یوسفوند، سعید شعبانلو،
جلد 24، شماره 3 - ( علوم آب و خاک - پاییز 1399 )
چکیده
بارندگی مهمترین منبع تأمین آب شرب و کشاورزی ساکنین نواحی مختلف کره زمین محسوب میشود. بنابراین شبیهسازی و تخمین این پدیده هیدرولوژیکی از اهمیت بسزایی برخوردار است. در این مطالعه برای اولین بار، بارش درازمدت شهر رشت در طی یک دوره 62 ساله از 1956 تا 2017 بهصورت ماهانه توسط یک مدل هوش مصنوعی ترکیبی بهینهیافته، شبیهسازی شد. برای توسعه مدل هوش مصنوعی ترکیبی (WGEP)، مدل برنامهنویسی بیان ژن (GEP) و تبدیل موجک (Wavelet transform) ترکیب شدند. در ابتدا، تأخیرهای مؤثر دادههای سری زمانی با استفاده از تابع خودهمبستگی شناسایی شدند و با استفاده از آنها برای هر یک از مدلهای GEP و WGEP هشت مدل متفاوت تعریف شد. سپس، نتایج مدلهای GEP تجزیهوتحلیل شدند و مدل برتر GEP و مؤثرترین تأخیرها معرفی شدند. مقادیر شاخص عملکرد (VAF)، ضریب همبستگی (R) و شاخص پراکندگی (SI) برای مدل برتر GEP بهترتیب مساوی با 25/765، 0/508 و 0/709 محاسبه شدند. علاوه بر این، تأخیرهای شماره (t-1)، (t-2)، (t-3) و (t-12) مؤثرترین تأخیرها بودند. در ادامه، اعضای مختلف موجک های مادر نیز بررسی شدند که موجک مادر demy بهعنوان بهینهترین انتخاب شد. همچنین، تجزیهوتحلیل نتایج مدلهای ترکیبی نشان داد که تبدیل موجک عملکرد مدل برنامهنویسی بیان ژن را بهشکل قابل ملاحظهای بهبود بخشید. استفاده از این موجک مادر باعث افزایش سه برابری شاخص عملکرد مدل WGEP برتر شد. علاوه بر این، شاخصهای آماری R و MARE برای مدل WGEP برتر بهترتیب مساوی با 0/935 و 0/862 بهدست آمدند. همچنین مقادیر SI، VAF و ضریب نشساتکلیف برای این مدل بهترتیب برابر با 0/296، 0/394 و 0/858 تخمین زده شدند. نتایج این مطالعه نشان داد که تبدیل موجک عملکرد مدل برنامهنویسی بیان ژن را بهشکل قابل توجهی افزایش میدهد و پیشنهاد میشود تبدیل موجک برای بهبود عملکرد سایر الگوریتمهای هوش مصنوعی در مباحث هیدرولوژیکی مورد استفاده قرار گیرد.
احسان یارمحمدی، سعید شعبانلو، احمد رجبی،
جلد 25، شماره 1 - ( علوم آب و خاک - بهار 1400 )
چکیده
بهینهسازی مدلهای هوش مصنوعی از اهمیت بسزایی برخوردار است زیرا باعث بهبود عملکرد این مدلها و افزایش انعطاف آنها میشود. در این مطالعه، عمق آبشستگی در مجاورت تکیه پلها به شکلهای مختلف توسط مدل ANFIS و ANFIS-Genetic Algorithm (GA) تخمین زده شد. بهعبارت دیگر، برای بهینهسازی توابع عضویت مدل ANFIS از GA استفاده شد که عملکرد مدل ANFIS بهشکل قابل توجهی بهبود یافت. در ابتدا، پارامترهای تأثیرگذار بر روی عمق آبشستگی در اطراف تکیهگاه پلها تعریف شدند. سپس با استفاده از این پارامترهای ورودی، یازده مدل مختلف برای هر یک از مدلهای ANFIS و ANFIS-GA تولید شدند. سپس با تجزیه و تحلیل نتایج این مدلها، مدل برتر برای هر یک از روشهای ANFIS و ANFIS-GA زنتیک معرفی شدند. بهعنوان مثال، مقدار ضریب همبستگی و شاخص پراکندگی برای مدل ANFIS بهترتیب برابر با 0/979 و 0/070 و برای مدل ANFIS-GA نیز بهترتیب مساوی با 0/986 و 0/056 محاسبه شدند. علاوه بر این، نسبت اختلاف متوسط برای مدلهای برتر ANFIS و ANFIS-GA بهترتیب مساوی با 0/984 و 0/988 بودند. بنابراین نشان داده شد که مدلهای ترکیبی ANFIS-GA دقت بیشتری در مقایسه با مدلهای ANFIS داشتند. همچنین، تحلیل حساسیت نشان داد که عدد فرود (Fr) و نسبت عمق جریان به شعاع حفره آبشستگی (h/L) بهعنوان مؤثرترین پارامترهای ورودی برای تخمین عمق آبشستگی در مجاورت تکیهگاه پلها شناسایی شدند.
فرشاد حیاتی، احمد رجبی، محمد علی ایزدبخش، سعید شعبانلو،
جلد 25، شماره 1 - ( علوم آب و خاک - بهار 1400 )
چکیده
تخمین و شبیهسازی روند بارندگی در نواحی مختلف جهان بهدلیل خشکسالی و تغییر اقلیم از اهمیت فراوانی برخوردار است. در این مطالعه، یک مدل هوش مصنوعی ترکیبی برنامهریزی بیان ژن- موجک (WGEP) برای مدلسازی بارندگی درازمدت 67 ساله شهر انزلی برای اولین بار توسعه داده شد. این مدل از ترکیب تبدیل موجک (Wavelet) و برنامهریزی بیان ژن (GEP) بهدست آمد. در ابتدا، بهینهترین عضو خانواده تبدیل موجک معرفی شد. سپس با تجزیه و تحلیل نتایج مدلسازی، دقیقترین تابع اتصال و برازش برای مدل برنامهریزی بیان ژن بهدست آمد. در ادامه، با استفاده از تابع خودهمبستگی و خودهمبستگی نسبی و تأخیرهای مختلف، 15 مدل WGEP توسعه داده شد. مدلهای WGEP برای بازههای زمانی 37، 20 و 10 ساله بهترتیب آموزش، آزمون و صحتسنجی شدند. همچنین، با انجام تحلیل حساسیت، مدل برتر و مؤثرترین تأخیرها برای شبیهسازی بارش درازمدت شناسایی شدند. مدل برتر مقادیر تابع هدف را با دقت بالایی تخمین زد. بهعنوان مثال، مقادیر ضریب همبستگی و شاخص پراکندگی برای این مدل در شرایط صحتسنجی بهترتیب برابر با 0/946 و 0/310 محاسبه شدند. علاوه بر این، تأخیرهای شماره 1، 2، 4 و 12 بهعنوان مؤثرترین تأخیرها در مدلسازی بارش توسط مدل ترکیبی معرفی شدند. همچنین، نتایج مدل برتر ترکیبی با مدل برنامهنویسی بیان ژن مقایسه شد که مدل ترکیبی دقت بیشتری داشت.
امیر حسین عظیمی، سعید شعبانلو، فریبرز یوسفوند، احمد رجبی، بهروز یعقوبی،
جلد 25، شماره 4 - ( علوم آب و خاک - زمستان 1400 )
چکیده
در این مطالعه، عمق حفره آبشستگی در پائین¬دست سرریزهای سنگی با شکل¬های مختلف J، I، U و W توسط یک روش نوین هوش مصنوعی تحت عنوان ماشین آموزش نیرومند خارج از محدوده (ORELM) شبیه¬سازی شد. داده¬های مشاهداتی به دو دسته آموزش (70 درصد) و تست (30 درصد) تقسیم شدند. سپس تابع فعال¬سازی بهینه برای شبیه¬سازی عمق آبشستگی در پائین¬دست سرریزهای سنگی انتخاب شد. در ادامه، با استفاده از پارامترهای ورودی که شامل نسبت طول سازه به عرض کانال (b/B)، عدد فرود تراکمی (Fd)، نسبت اختلاف عمق جریان بالادست و پائین¬دست سازه به ارتفاع سازه (Δy/hst) و فاکتور شکل سازه (φ)، یازده مدل مختلف ORELM برای تخمین عمق آبشستگی توسعه داده شدند. با انجام یک تحلیل حساسیت، مدل برتر و مؤثرترین پارامترهای ورودی شناسایی شدند. مدل برتر مقادیر آبشستگی¬ها را توسط پارامترهای بدون بعد b/B, Fd, Δy/hst شبیه¬سازی کرد. برای این مدل، مقادیر ضریب همبستگی (R)، شاخص عملکرد (VAF)و ضریب نش (NSC) برای مدل برتر در شرایط تست به¬ترتیب مساوی با 0/956، 91/378 و 0/908 بدست آمدند. همچنین، پارامترهای بدون بعد b/B, Δy/hst به¬عنوان مؤثرترین پارامترهای ورودی شناسایی شدند. همچنین، نتایج مدل برتر با مدل ماشین آموزش نیرومند نیز مقایسه شدند که مدل ORELM دقت بیشتری داشت. علاوه بر این، تحلیل عدم قطعیت نشان داد که مدل ORELM مقادیر آبشستگی¬ها را بیشتر از واقعیت تخمین زد. در ادامه، برای مدل برتر، یک تحلیل حساسیت مشتق نسبی (PDSA) اجرا گردید.
یوسف اسماعیلی، فریبرز یوسفوند، سعید شعبانلو، محمد علی ایزدبخش،
جلد 27، شماره 2 - ( علوم آب و خاک- تابستان 1402 )
چکیده
هدف از انجام این پژوهش پهنهبندی مناطق مختلف حوزه مرزداران از نظر خطر وقوع سیل است. از آنجایی که بودجه اختصاصیافته برای انجام کارهای مدیریتی محدود است و امکان انجام عملیات در کل حوزه امکانپذیر نمیباشد، بنابراین، داشتن نقشهای با اولویتبندی مناطق مختلف از نظر احتمال وقوع سیلاب بسیار مفید وضروری است. بدینمنظور، از مدل معروف و شناخته شده یادگیری ماشین یعنی مدل بیشینۀ بینظمی (MaxEnt) به لحاظ الگوریتم محاسباتی توانمند در زمینه ارزیابی فرایند وقوع سیلاب بهعنوان بنچمارک استفاده شد. شواهد سیلاب با استفاده از بازدیدهای میدانی،گزارشها و اطلاعات سازمانی موجود ثبت و در سامانه اطلاعات جغرافیایی (GIS) در قالب نقشه تهیه شد. همچنین براساس مرور منابع گذشته، لایههای مربوط به دوازده عامل کنترلکننده بهعنوان عوامل پیشبینی کننده وقوع سیل در منطقه مورد مطالعه در سامانه اطلاعات جغرافیایی تهیه شدند. بهمنظور ارزیابی نتایج مدلسازی، از مقدار مساحت زیر منحنی (AUC) استفاده شد. سپس براساس نقشه تهیه شده مستعدترین مناطق وقوع سیلاب که برای اجرای عملیات مدیریتی در اولویت هستند، شناسایی شدند. بر اساس نتایج حدود 100 کیلومترمربع از مساحت منطقه مورد مطالعه جزء مستعدترین مناطق برای انجام عملیات مدیریتی شناسایی شدند. بر اساس نتایج دقت مدل بیشینه بینظمی 98 درصد در مرحلۀ آموزش و 95 درصد در مرحله اعتبارسنجی بدست آمد. لایههای فاصله از آبراهه، تراکم زهکشی و شاخص رطوبت توپوگرافی بهترتیب از مؤثرترین عوامل در وقوع سیلاب شناخته شدند.