Search published articles


Showing 3 results for A. Fotovat

A. Halajnia, G. H. Haghnia, A. Fotovat, R. Khorasani,
Volume 10, Issue 4 (winter 2007)
Abstract

Study of phosphorus reactions over time and the role of organic matter in the calcareous soils are important for the development of P fertilizer and manure management practices. The objective of this study was to determine the effect of applied manure on P availability and its chemical forms in the soil, over time. Eight samples were collected from semi-arid calcareous soils of Mashhad plain. The samples were treated with two levels of inorganic P (0 and 300 mg P kg-1 soil as KH2PO4) and two levels of organic matter (0 and 1% cattle manure). The experiment was conducted in a completely randomized design with factorial arrangement. The treated soil samples were incubated for 2, 5, 10, 30, 60, 90 and 150 days, then analyzed for available P (Olsen-P). The result showed that only 17% of added phosphorus was available in P treatment at the end of experiment. In manure treated soils, this figure reached 34% for the same period of time. Application of manure along with P increased the recovery of applied P and CBD-P (Citrate-Bicarbonate-Dithionite). This may be due to the formation of P-organic complexes with Fe oxides. Application of manure in soil increased NaCl-NaOH-P considerably compared with P and P+OM treatments. It can be concluded that P originating from manure compared with inorganic-P may be more available for plants over the time.
A. Dehghani, A. Fotovat, Gh. Haghnia, P. Keshavarz,
Volume 11, Issue 41 (fall 2007)
Abstract


M. Esfahani Moghaddam, A. Fotovat, Gh. Haghnia,
Volume 16, Issue 59 (spring 2012)
Abstract

Silver toxicity and its fate in the environment are currently being debated and are important as challenging research topics. Even though there are several studies on its total content in soils, fractionation of Ag especially in calcareous soils has not been investigated. Therefore, to provide fundamental information on the chemical behavior of Ag in calcareous and noncalcareous soils, we studied 8-step chemical fractions of Ag (i.e., EXCH, CARB, Me-Org, re-MeOx, H2O2-Org, am-MeOx, cr-FeOx, and RES) after 30 and 60 days of incubation in soils amended with Ag (0 and 15 mg kg-1), sewage sludge (0 and 20 t ha-1) and EDTA (0 and 0.5%). Experimental results showed that redistribution of Ag in spiked noncalcareous soils was EXCH (34%), H2O2-Org (33%) and RES (17%). In calcareous soils, after 30 days, EXCH- and RES-Ag increased but at the end of 60 days H2O2-Org-Ag increased. Based on our data, we could conclude that addition of Ag results in an increase of Ag mobility in soils but incubation and sewage sludge may have adverse effect on its mobility. In contrast to noncalcareous soil, EDTA in calcareous soil resulted in higher Ag mobility. This may have environmental implications in Ag polluted calcareous soils.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb