Showing 2 results for A. Koocheki
M. Forouzangohar, G. H. Haghnia, A. Koocheki, F. Tabatabaie-Yazdi,
Volume 9, Issue 1 (spring 2005)
Abstract
Of all types of xenobiotics, pesticides such as herbicides play a significant role in soil and water pollution due to their widely usage all over the world. This study addresses the ability of organic amendments to enhance atrazine and metamitron degradation in two herbicide contaminated soils with contrasting textures under laboratory conditions. Soil samples were collected from surface soils with textures of sandy loam and silty clay, from northeastern part of Iran. Initial concentration of herbicides was 50 mgkg-1 soil. Contaminated soil samples were treated by manure, compost and vermicompost at the rates of %0.5 and %2 (w/w). Residual concentrations of atrazine and metamitron were determined by HPLC at the end of incubation periods of 20,40 and 60 d. Residual concentrations of atrazine were 93, 77.8 and 72.4 % of the initial concentration after 20, 40 and 60d incubation, respectively. Residual metamitron concentrations were clearly lower than atrazine. After 20,40 and 60 d., the remaining concentrations of metamitron were 5.8, 2 and 1.2 %, respectively. Organic amendments at the rates of .5 and 2 % showed similar effects on the enhancement of herbicides degradation in soils. However, no significant effect was observed between types of organic amendments. Degradation was clearly affected by soil textures. Residual concentrations of herbicides were higher in sandy loam than in silty clay soil.
A. Koocheki, S. A. Mortazavi, M. N. Mahalati, M. Karimi,
Volume 10, Issue 3 (fall 2006)
Abstract
In order to determine the effects of emulsifiers (Lecithin, E471 and E472) and their levels (0, 0.25, 0.5, 0.75 and 1%) and also addition of fungal α-amylase (0, 5, 10 and 20 g/100 kg flour) on bread staling, a completely randomized experiment with factorial design and 3 replications was conducted. Bread staling was determined after 0, 24, 48 and 72 hours of storage. Correlation between variables was analyzed by simple and multivariate regression. Results indicated that addition of emulsifiers reduced the firmness of bread. E472 had the most and E471 had the least effect on bread firmness after 72 hours of storage. Addition of α-amylase reduced the bread firmness and this effect was less pronounced after 72 hours of storage. Correlation between variables based on the development of a model showed that in the first day of bread production, optimal levels of emulsifiers were 1%, 0.25% and 0.5% for Lecithin, E471 and E472, respectively. In case of simultaneous application of emulsifiers and enzyme, the optimal level of enzyme was 5 g/100 kg flour.