Search published articles


Showing 2 results for A. Nikkhah

A. Nikkhah, M. Alikhani, H. Amanlou, A. Samie,
Volume 7, Issue 1 (spring 2003)
Abstract

A ruminal in situ experiment using three fistulated ewes was conducted to determine dry matter (DM) and crude protein (CP) degradation of steam–flaked broomcorn (SFBr), ground broomcorn (GBr) and ground barley (GB). Grain samples were suspended in the rumen of sheep for 0, 2, 4, 8, 16, 24 and 48 h. Nylon bags were washed with tap water after removal. Effective degradability of DM at outflow rates of k = 0.05 and k = 0.08 h-1 was significantly higher for SFBr than for GBr (59 and 53% vs. 43 and 35%). SFBr has considerably higher soluble DM than GBr and GB. Insoluble DM of SFBr was lower than that of GBr and GB. Solubility of CP in broomcorn grain was significantly decreased by steam–flaking, but degradation rate of insoluble CP was not altered. Results from this study showed that SFBr supplies the major source of availabe nutrients for rumen microorganisms compared with GBr. In other words, using the most efficient processing method for ruminants will be necessary.
S. R. Miraei Ashtiani, P. Zamani, A. Nikkhah, M. Moradi Shahrbabak, A. Naserian, F. Akbari,
Volume 9, Issue 4 (winter 2006)
Abstract

Improvement of feed efficiency in dairy farming economically has a great importance. In this study, the genetic parameters of net energy efficiency and its relationships with milk yield, 3.2% fat corrected milk, body weight, gross income and income over feed costs were investigated, by the 2589 monthly records collected from the 723 lactating cows in the 3 herds. The different requirements of energy were estimated, by the National Research Council (NRC) models. A general linear model was employed for determining significant factors affecting each trait. The genetic parameters were estimated by a multivariate analysis with the derivative free approach of restricted maximum likelihood algorithm. The animal models contained the fixed effects of herd-year-season, parity number and stage of lactation, the regression coefficients of each trait on the dietary levels of rumen undegradable protein and metabolizable energy, and the random effects of animal additive genetic, permanent environment and residuals. The heritability of milk yield, 3.2 percent fat corrected milk, body weight, net energy efficiency, gross income and income over feed cost, were estimates 0.31, 0.32, 0.30, 0.34, 0.24 and 0.29 respectively. The results of this study indicated that the direct selection for net energy efficiency might genetically improve the feed efficiency. It also seems that the selection for fat corrected milk may be effective for the indirect improvement of feed efficiency and economic performance of dairy cows.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb