Showing 3 results for A. Safadoust
A. Safadoust, M. R. Mosaddeghi, A. A. Mahboubi, A. Nouroozi, Gh. Asadian,
Volume 11, Issue 41 (fall 2007)
Abstract
The increased potential for soil erosion and compaction due to continuous row crop production and intensive tillage is causing some concern and has led to the consideration of reduced tillage techniques as part of the solution. The objective of this study was to investigate the short-term (one-year) influences of different management practices on the physical properties of a sandy loam soil under corn crop. Treatments were the combinations of three tillage systems (no-till, NT chisel plow, CP and moldboard plow, MP) and three composted cattle manure rates [0, 30 and 60 ton (dry weight) ha-1]. The experiment was carried out in a split-plot design. Three replicates of the treatments were applied in a randomized block design. Saturated hydraulic conductivity (Ks), total porosity (TP), macro-porosity (Macro-P), micro-porosity (Micro-P) of soil and mean weight diameter (MWD) of aggregates, were measured to a depth of 22.5 cm when 100 percent of the tassels appeared. Tillage and manure combination had significant effects on Log[ Ks], TP, Macro-P and Micro-P. The MP system increased pore space and continuity due to complete inversion and loosening, and as a result Ks, TP, Macro-P and Micro-P were higher than NT system. Higher Macro-P observed for CP might have caused higher Ks versus MP. Reduced tillage systems increased MWD and the increment of manure caused an increase in MWD over all tillage treatments. The results indicate short-term positive effects of manure application on soil pore size characteristics and aggregate stability under moldboard and chisel plowings in the region.
A. Safadoust , A. Mahboubi, M. R. Mosaddeghi, Gh. Khodakaramian, A. Heydari,
Volume 15, Issue 57 (fall 2011)
Abstract
In this study, the transport of nalidixic acid-resistant Escherichia coli (E. coli NAR) through two soils of sandy loam and clay loam was investigated. Saturated and unsaturated flow conditions were applied at two temperatures of 5 and 20ºC. Leaching was done using large repaired soil columns which had been subjected to physical weathering. A 20-cm diameter disk infiltrometer was set up to establish the steady-state flow conditions. Effluent was sampled at three depths of 15, 30 and 45 cm of soil columns. Saturated flow condition, temperature of 20 ºC and clay loam soil resulted in increasing the bacteria concentration in the leachate. Filtration coefficient and relative adsorption indices in sandy loam soil (average flow conditions, temperature and depth) were greater than those of clay loam soil with the respective values of 33% and 23%. These results may be related to the instability of soil structure and abundance of micropores in the sandy loam columns. In other words, the bacteria were physically blocked and entrapped in the fine pores of sandy loam soil. Effluent bacteria concentration decreased by depth of soil column, indicating the effect of soil on bacterial filtration as a natural filter. Leaching with cold water led to decrement of flow rate and consequently increment of bacterial filtration in the two soils of clay loam and sandy loam (average flow conditions, temperature and depth) with the respective values of 100% and 68%.
M. Nikpur, A. A. Mahboubi, M. R. Mosaddeghi, A. Safadoust,
Volume 15, Issue 58 (winter 2012)
Abstract
The effects of soil intrinsic properties on soil structural stability were evaluated. Soil samples (33 series) with wide ranges of properties and structural stability were collected from Hamadan province. Two structural stability indices were used: mean weight diameter (MWD) using Yoder method and De Leenheer-De Boodt index (DDI). Wetting pre-treatments (fast wetting to saturation and slow wetting to a matric suction of 30 kPa) were applied before wetting. Linear and multiple regression relations of MWD and DDI with the soil intrinsic properties (organic matter, clay, fine clay, silt, sand, calcium carbonate, EC and pH) were assessed. Results showed that organic matter had the highest impact on the two mentioned indices. Following organic matter, clay, fine clay and calcium carbonate were ranked respectively one after another. Fast wetting caused a higher aggregate break-down, due to its destructive energy, air entrapment, and non-uniform swelling of the soil whereas slow wetting exhibited better differentiation of soils with low structural stability. The findings of this research demonstrated high agreement (R2>75%) between the MWD and DDI, recommended both to be used for evaluating of the aggregate stability in Hamedan province