Search published articles


Showing 1 results for Abdi Ardestani

S. Abdi Ardestani, B. Khalili, M. M. Majidi,
Volume 25, Issue 1 (Spring 2021)
Abstract

Long-term drought effect is one of the main factors of global climate change, with  consequences for soil biogeochemical cycling of carbon and nitrogen and the  function of soil ecosystem under drought conditions. We hypothesized that 1) the Bromus inermis, Dactylis glomerata and festuca arundinacea species would differ in their rhizosphere responses to drought and 2) combined plant species and drought would have offsetting effects on the  soil biological traits. We tested these hypotheses at the long-term drought field expreiment at the  Lavark Farm of Isfahan University of Technology by analyzing soil microbial biomass carbon and nitrogen and activity of β-glucosaminidase in the rhizosphere of Bromus inermis, Dactylis glomerata and festuca arundinacea species. Soil microbial biomass carbon and nitrogen responses to drought depended on plant species,  such that the highest MBC was recorded in the Bromus inermis rhizosphere, while the  lowest was in the Dactylis glomerata rhizosphere, thereby suggesting the greater microbial sensitivity to drought in the Dactylis glomerata rhizosphere. Genotype variations (drought tolerate and sensitive) mostly affected the change in the β-glucosaminidase activity, but they were not significantly affected by drought treatment and plant species. In general, the positive effects of  the plant genotype could offset the negative consequences of drought for soil microbial biomass and traits.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb