Search published articles


Showing 3 results for Abedi Koupaei

M.h. Rahimian, J. Abedi Koupaei,
Volume 25, Issue 3 (Fall 2021)
Abstract

Soil salinization is a phenomenon that threatens agricultural lands and natural areas, leading to reduced productivity, declinations of soil resources and vegetation covers, and finally, the abandonment of these areas. This study has quantified the groundwater Capillary Rise (CR) and actual Evapotranspiration (ETa) and their relationship with the soil salinity of Azadegan plain, west of Khuzestan Province. The study area has an arid climate, characterized by shallow and saline water table and a high potential evaporation rate. For this purpose, field samplings were carried out in four consecutive seasons of the year to measure salinity, soil moisture, and texture, groundwater table, and salinity at 27 scattered representative points of the study area. The CR values were estimated in different seasons of the year using UPFLOW model. Moreover, four representative Landsat satellite images were acquired to map seasonal changes of ETa through the SEBAL algorithm. Then, the effects of ETa on CR and consequent soil salinity build up were quantified in a seasonal time scale. The results showed that the average daily ETa of Azadegan plain varied from 1.55 to 7.96 mm day-1 in different seasons which caused a capillary rise of around 1.2 to 1.5 mm.day-1. This has led to the upward movement of 12 to 18.8 ton ha-1  month-1 of salts from shallow groundwater to the soil surface, which has caused surface soil salinization. Also, there was a close relationship between ETa, CR, and soil salinity parameters, which can provide insight into modeling of spatial and temporal changes of soil salinity and provision of solutions to reduce the accumulation of solutes in the soils of the study area.

J. Abedi Koupaei, M.m. Dorafshan, A.r. Gohari,
Volume 26, Issue 3 (Fall 2022)
Abstract

One of the most significant techniques for saline wastewater treatment is bioremediation. Halophytes are known as the plants that can tolerate the high concentration of salts, in such salinity common plants cannot be often able to survive. In this research, the feasibility of desalination by using halophyte (Chenopodium quinoa Willd.) was studied. Quinoa plants were grown in the hydroponic system in 12 containers including 9 containers with plants and 3 containers without plants as control. Fifteen plants were planted in each container and three salinity levels including 2, 8, and 14 ds/m for two different periods (15 and 30 days) were studied in a multi-factors completely randomized design. Three replications of each salinity level were conducted and the Electrical Conductivity (EC) parameters, including Calcium, Magnesium, Sodium, and Chloride ions were determined before and after treatment by Quinoa plants. The results showed that the Quinoa plants reduced 5.33%, 8.12%, and 9.35% of the EC at EC~2 dS/m (Marginal Water), EC~8 dS/m (Brackish Water), and EC~14 dS/m (Saline Water), respectively. Moreover, Calcium, Magnesium, Sodium, and Chloride ions decreased up to 10%, 7.62%, 5.60%, and 7.01%, respectively depending on the salinity levels. Therefore, the Quinoa plant has a relatively low potential in unconventional water treatment especially saline wastewater.

J. Abedi Koupaei, Z. Iravani,
Volume 27, Issue 1 (Spring 2023)
Abstract

Water pollution with petroleum products is one of the serious environmental problems in Iran. According to the importance of this issue, refining benzene by bio-absorbent has attracted much attention in recent years. The maximum permissible limit assigned by World Health Organization (WHO) for benzene in drinking water is 0.001 mg/L. In recent years, attempts made to develop inexpensive adsorbents utilizing abundant natural materials. Agricultural waste materials often employed as adsorbent may have potential marketing preference for wastewater treatment among other adsorbent types due to the low cost, environmentally friendly, naturally accessible, and efficiency. The objective of this study was to investigate the removal of benzene by batch and continuous techniques. In this study, the ash cone pine (APC) was used for the removal of benzene from aqueous solutions and its ability as an adsorbent, while the variable initial concentration of benzene, the amount of adsorbent, contact time, temperature, and pollutant's solution pH were investigated. Langmuirand and Freundlich Isotherm models were fitted to benzene adsorption equilibrium data. Kinetic models including pseudo-first order, pseudo-second order, intra-particle diffusion, and power function were used to describe kinetic data of benzene adsorption. The results showed that optimum benzene adsorption was observed at pH=7, and the optimum amount of adsorbent was 0.1 g. The observed equilibrium time was 10 minutes. The equilibrium adsorption capacities were 366 mg/g at 2000 mg/L initial benzene concentration. Linear and non-linear isotherm studies showed that equilibrium data better fitted the Langmuir isotherm model. Kinetic studies showed better applicability of the pseudo-second-order kinetics model. Column adsorption experiments were performed to check the absorbent performance during continuously injecting benzene solution into the adsorbent column until the adsorbent has been saturated to complete the studies on the introduced adsorbent. The results for columns with continuous inflow indicated that the maximum capacity of adsorption of benzene for the adsorbent column with a diameter of 3cm, and input concentration of 1000 mg/L, and an input rate of 100 mL/h for ash cone pine (APC) was 295 mg/g. The results of this experiment showed that APC has a high capability for the removal of benzene from aqueous solutions.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb