Search published articles


Showing 5 results for Aeini

A.a Sabziparvar, H Tabari, A Aeini,
Volume 14, Issue 52 (sumer 2010)
Abstract

Soil temperature is one of the important variables in hydrology, agriculture, meteorology and climatology studies. Owing to the fact that soil temperature is only measured at synoptic stations, reconstruction of this variable in other places is of great importance for many relevant agricultural surveys. Using 10-year (1996-2005) daily meteorological observations, including: air temperature, global solar radiation, precipitation, relative humidity, vapor pressure, wind speed and air pressure data, different empirical relationships are suggested. At statistically significant level (P<0.05), the suggested regressions are reliable for estimating soil temperature in various depths (5, 10, 20, 30, 50 and 100 cm) and different climate types. Using soil temperature as the dependent variable and the other meteorological parameters as the independent variables, the multivariable relationships are classified accordingly. The results indicate that the impact of meteorological parameters on soil temperature is not the same. At statistically significant level (P<0.05), the mean daily air temperature presented the highest correlation coefficients with soil temperature for all climate types (on average, from R2>0.91 for warm semi-arid, to R2>0.85 for humid climates). Other results highlighted that the correlation coefficients decreased as the soil depth increased. The behavior of statistical validation criteria of the suggested relations are also discussed for all the mentioned climates.
M. Bahreini Touhan, E. Dordipour, S. A. Movahedi Naeini,
Volume 14, Issue 53 (fall 2010)
Abstract

Kinetical study on non-exchangeable potassium (NEK) release is necessary for management, optimum use of soil resources, availability and supplying power of potassium. Information about NEK release rate in Golestan soils is limited. The aim of this study was to investigate the NEK release of saturated soil sample by calcium using acid citric and CaCl2 extractants from 2 to 1844 h duration in 12 dominant soil series in Golestan province. Different soils indicated various responses to continuous extraction. The rate of K released in different soils was lower in CaCl2 than that of Citric acid. Potassium release was faster in earlier periods of the extraction in all soils followed by a lower release rate. Due to high coefficient of determination and low value of the standard error of the estimate, the NEK release kinetic by citric acid and CaCl2 were well described by Elovich and Parabolic diffusion equations and Power, First order and Elovich equations, respectively. Therefore, NEK release rate was controlled by K diffusion from weathered surface of soil minerals.
M. Liaghat, F. Khormali, S. A. Movahedynaeini, E. Dordipour,
Volume 16, Issue 61 (fall 2012)
Abstract

Studies on the soils of western Golestan province show that regardless of increased rain and presence of clay minerals with high cation exchange capacity, potassium extractable with ammonium acetate is low. In order to find the reason for this low amount of available K, clay minerals and micromorphology of the soil porosity were studied. Twenty disturbed and undisturbed samples from each horizon were taken for physicochemical properties, mineralogy and micromorphological studies. Four selected profiles included Gypsic Aquisalids, Typic Endoaquepts, Typic Calcixerolls and Typic Hapludalfs. The results showed that in addition to the clay content and type of clay minerals in soils that can affect soil available K (Kava.), it seems soil porosity can also affect Kava. mainly through their effects on extension of roots, water and nutrients transmission. Favorable content of clay and dominance of smectites in Mollisols and also higher porosity and dominance of channel porosities caused the presence of higher Kava, in these soils. presence of HIS. poor soil drainage, reduction of Fe3+ in smectite crystal lattice in Inceptisols, and also less amount of porosities caused the presence of higher potassium fixation and reduction of Kava. in these soils.
B. Rezaeiniko, N. Enayatizamir, M. Norouzi Masir,
Volume 22, Issue 4 (Winter 2019)
Abstract

Zinc is essential micronutrients for plants. This element improves plant growth and yield and plays a role in the metabolism of carbohydrates. Zinc deficiency in soils and Iranian crops is possible due to numerous reasons such as calcareous soils, excessive use of phosphorus fertilizers and unbalanced fertilizer use. The effect of zinc solubilizing bacteria on some wheat properties was considered as a factorial experiment in greenhouse conditions based on a completely randomized design. Treatments consisted of four levels of bacteria comprising B1 (control), B2 (Bacillus megaterium), B3 (Enterobacter cloacae) and B4 (consortium of both bacterium), and ZnSO4 fertilizer at three levels including Zn0 (control), Zn20 (20 Kg/ha) and Zn40 (40 kg/ha). During the experiment, some parameters such as plant height and chlorophyll index were measured. At the end of the cultivation period, soil available zinc, dry weight of root and aerial part, and the zinc concentration of the root, shoot and grain were determined. Grain yield and zinc uptake in the grain were also calculated. The results indicated soil exchangeable zinc content was increased significantly (P<0.05) in all bacterial treatments, as compared to the control treatment. The maximum amount of soil exchangeable zinc, grain yield, zinc concentration and uptake in grain were observed in the treatment containing bacteria consortium with the application of 40 kg/ha of zinc sulfate fertilizer, which was followed by the treatment containing Enterobacter cloacae with the application of 40 kg/ha of the zinc sulfate fertilizer. The maximum amount of all measured properties in the treatment containing Enterobacter cloacae and Bacillus megaterium indicated the possibility of applying those bacteria for zinc enrichment in wheat, crop optimal production, and the sustainable agriculture.

M. Motavallizadeh Naeini, R. Modarres,
Volume 25, Issue 4 (Winiter 2022)
Abstract

Dust storms in arid and semi-arid regions have harmful impacts on the environment, the economy, and the health of local and global communities. In this study, the frequency of annual dust events in twenty-five stations and five climatic variables including rainfall, maximum annual wind speed, average annual wind speed, maximum annual temperature, and average annual temperature in arid regions of Iran up to 2014 were used to show the effects of climatic change on dust storms. Annual correlation coefficient time series between climatic variables and dust storms were first calculated based on monthly observations. Then, the trend in climatic variables, dust storm frequency, and their correlation were assessed using the Mann-Kendal method. Results indicated that the correlation coefficients had fluctuations in time and are both significant and insignificant in different years that reach from 0.6 to 0.9 for wind speed and temperature and -0.2 to -0.6 for precipitation. This trend in correlation has the same direction with climatic variables and shows co-movement between climatic change and dust storm fluctuations in central Iran. Results also showed that wind speed and temperature have a high impact on dust storm fluctuations and rainfall reduction has an increasing effect on dust storms.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb