Showing 12 results for Alipour
J. Pourreza, H. Nasrollahi, A.h. Samie, M. Mohammadalipour, A. Assadian,
Volume 3, Issue 4 (winter 2000)
Abstract
In order to study the effects of Total Dissolved Solids (TDS) in water on the performance of broiler chickens, preliminary data were obtained on water resources of Isfahan Province. Complementary tests and analyses were also performed including physical, chemical and microbial ones. Six different water qualities based on TDS contents of less than 1000, 1000-2000, 2000-3000, 3000-4000, 4000-5000 and more than 5000 ppm were selected. The main experiment lasted for 7 weeks (7-56 days), using 288 chickens in a completely randomized design, with 3 replications, while, the environmental and genetic factors were controlled in an identical broiler housing.
The results showed that using water with different TDS contents had the most negative effects on mortality rate (%) in the rearing period and up to 56.2% mortality was recorded at the highest TDS content. Water consumption showed high and positive correlation (P < 0.05) with TDS (r = +0.74). Correlation between TDS and bedding moisture was also high (r = +0.65) and significant (P < 0.05). The differences between final body weight of control chickens and highest level of TDS were significant (P < 0.05). Feed intake also was affected by different TDS contents and showed similar results as with body weight. Increasing the TDS level decreased the abdominal fat in the female chickens and ash content of tibia in the male chickens. It is concluded that water TDS should be considered for the development of broiler chicken farms. Therefore, it is recommended that higher quality waters (with a TDS content of 3000 ppm) must be used for this purpose. Otherwise, appropriate systems should be used to improve physical and chemical composition of the water.
H. Alipour, A. Rezai, S. A. M. Meibodi, M. Taheri,
Volume 5, Issue 4 (winter 2002)
Abstract
This experiment was conducted to study genetic variation for electrophoretic seed protein patterns and their relations with some seed characteristics such as protein and oil percentages, chemical compositions and 100-seed weight among 270 soybean (Glycine max L. Moench) genotypes.
Among different electrophoresis procedures examined, 10% and 4.5% concentrations of acrylamide for resolving and stacking gels, respectively, 13.5 mg/ml concentration of protein buffer extraction, injection of 10 microlitre sample injection into gel hollows, 2.5 miliamper and 2-hours staining period were determined as the best combination to achieve clear bands and good separation. Based on relative mobility on gel, 30 protein bands were observed, of which only 5 varied among genotypes. In general, 8 electrophoretic patterns were recognized. Cluster analysis based on qualitative evaluation of patterns grouped the genotypes in 8 clusters and classified different bands in three groups. Simple concordance (matching) coefficients between protein bands with relative mobilities of 2.5% and 49.5% were zero, which is an indication of their independent occurrence. Probably, these bands are coded with one gene that in dominant and recessive homozygous genotypes appear as a single band at different positions on the gel. Analysis of variance revealed significant differences (P<0.05) among protein patterns for protein and oil percentages. Correlation coefficients between variable protein bands and studied traits showed a positive and significant relation (P<0.05) of bands with relative mobility of 3.5 and 49.5 with protein and phosphorous contents of the seeds, respectively. Protein patterns having band with relative mobility of 49.5 had the highest phosphorous content. Black hilum color of seeds was related to protein band with relative mobility of 52.
J. Poureza, M. Mohammad Alipour,
Volume 7, Issue 4 (winter 2004)
Abstract
This experiment was conducted to investigate the effect of whey via drinking water on broiler chicken performance. In a completely randomized design, whey at levels of zero, 10, 20, 40, 80, and 100% of drinking water was used for 47 days. 720 day-old broilers (Ross) were divided into 24 groups, 30 chicks per group and each experimental treatment was given to four replicates from 7-54 days of age. The whey was supplied freshly. The chicks had free access to feed and water during the experimental period. All chicks were fed with starter, grower, and finisher diets. Chicks in all pens were weighed and their feed consumption was calculated at 21, 42 and, 54 days of age. At the end of the experiment, two males and two females from each pen were selected, killed and their carcass, abdominal fat, pancreas, liver and ileum were weighed. Ileal contents of each pen were collected and pooled and kept at -20oC for bacterial count. The litter moisture content of each pen was determined at days 21 and 42. Body weight, daily body weight gain, feed conversion, and litter moisture were significantly (P<0.01) affected by whey levels. These indices decreased as a result of consuming whey by more than 40% feed conversion, however, increased. Percentage of carcass decreased significantly (P<0.01) due to consumption of 80 and 100% whey. Percentages of abdominal fat, liver, and pancrease were not significantly affected by the amount of whey. Percentage of ileum increased and showed significant (P<0.05) difference with control group. The regression equations for body weight and daily body weight gain, feed conversion and litter moisture in all ages, were significant (P<0.05) and polynomial. This indicated that consumption of whey by more than 40% caused reduction in broiler performance. No significant differences were observed in ileal contents of Lactobacillus and Entrobacteria due to different levels of whey, but total bacteria in ileum contents increased significantly (P<0.01) as whey content in drinking water increased.
M. Fazlalipour, B. Rabiei, H. Samizadeh Lahiji, H. Rahim Soroush,
Volume 11, Issue 42 (winter 2008)
Abstract
Application of selection index for screening desired plants based on complex quantitative traits can be more effective than direct selection. This study was conducted using an F2 rice population consisting of 87 plants derived from a cross between two cultivars Gharib and IR28. The purpose was to establish suitable selection indices for increasing yield and its related traits in research farm of Rice Research Institute of Iran (RRII), Rasht, in 2005. Studied traits included the days from sowing, germinated grain to maturity (MD), plant height (PH), panicle length (PL), flag leaf length (FL), flag leaf width (FW), number of panicles per plant (PP), number of grains per panicle (GP), number of spikelets per panicle (SP), 100-grain weight (GW), grain yield per plant (GY), biomass (BM), harvest index (HI), grain length (GL) and grain breadth (GB). Among the studied traits, 100-grain weight (GW), biomass (BM) and harvest index (HI) (0.99) and flag leaf width (FW) (0.35) showed the highest and lowest broad-sense heritability, respectively. Path coefficient analysis revealed that BM, HI, GP had positive direct effects on GY. Calculation of five different selection indices based on optimum and base indices indicated that selection for BM, HI and GP using genotypic path coefficients and their heritability as economic values would be a suitable selection criterion for improving population. Moreover, this study showed that both optimum and base indices show the same genetic progress for the studied traits. Since evaluation of base index, is much easier than the optimum index, it is highly recommended.
M Valipour, M Karimian Eghbal, M.j Malakouti, A Khosh Goftamanesh,
Volume 12, Issue 46 (1-2009)
Abstract
Salinization and alkalization are considered spatiotemporal dynamic soil degradation processes. In order to investigate the effects of agricultural activities on land degradation and soil salinity, Shamsabad area in Qom province was selected. Aerial photos (1955) and satellite images (1990-2002) were used to examine the changes in land use. Soil samples were collected from 25 locations in the study area from 0-50 cm and 51-100 cm depth at each location. For comparative purposes, sampling locations in this study were similar to locations used for salinity study in 1983. For each sample, pH, electrical conductivity (ECe), base saturation percentage, exchangeable sodium, lime and texture were measured. Land use and salinity maps were created by using geographic information system (GIS) softwares. Results revealed an increase of 9.5 times in cultivated lands in 47 years. Increase in agricultural activities in the study area has also intensified the pressure on water resource in the area, lowering ground water tables and degrading water quality. In the 0-50 cm soil depth, the average soil ECe was 6.5 dS/m in 1983, which increased to 10.7 dS/m in 2005. If soil salinity trend and pressure on water resources continue, large part of Shamsabad area is expected to change to desert in near future years.
A. Malekian, H. Alipour, M. Kheirkhah Zarkesh, S. Gharachelo,
Volume 18, Issue 69 (fall 2014)
Abstract
Determine appropriate locations with accuracy and speed required is for Floodwater spreading very important. The main objective of this research, preparation, use and evaluation decision support systems is based on GIS and RS techniques to identify and prioritization appropriate areas Floodwater spreading in the study area. In this study area suitable for flood water spreading were selected based on major criteria four, sub criteria eight and index twentyfour. Finally five scenario will be provide and assessment (a scenario based on the relative values for the criteria four, and different scenarios four based on the obvious one of the main criteria). Comparison desirability average among the scenarios five indicate that it is Sub watershed (1) In the scenario third (infilteration preferred, water application preference and equality of all the main criteria) had a higher average desirability therefore between Sub watershed 2 in this scenario is preferred more than the other Sub. Of between the two sub watershed ivar region considering that the desirability average, sub watershed (1) and implemented of between scenarios, scenario (1) (infilteration major criteria preferred) were selected as first priority. Second priority for Floodwater spreading site selection is belong to sub watershed 2, and with scenario (1).
M. Aalipour Shehni, A. Farrokhian Firouzi, H. Motamedi, A. Koraei,
Volume 19, Issue 71 (spring 2015)
Abstract
Macrospore created by decaying plant root provides pathways for rapid transport of pollutants in soil profile. The main objective of this study was quantitative analysis of the effect of plant root (Zea mays L.) on bacterial and chloride transport through soil. Experiments were conducted in 9 soil columns packed uniformly with loamy sand. The treatments were bare soil, bare soil with corn (Zea mays L.) root and bare soil after decaying the corn root. The Breakthrough curves of Chloride were measured. Breakthrough curve (BTCs) of Escherichia coli and chloride were measured, too. The HYDRUS-1D one and two site kinetic attachment–detachment models were used to fit and forecast transport and retention of bacteria in soil columns experiment. The results indicated that the difference between soil hydraulic properties (saturated hydraulic conductivity and flow velocity) of the treatment was significant (p < 0.05). The result also showed that the two-site kinetic model leads to better prediction of breakthrough curves and bacteria retention in the soil in comparison with one-site kinetic model. Interaction with kinetic site 1 was characterized by relatively fast attachment and slow detachment, whereas attachment to and detachment from kinetic site 2 was fast. Most of the cells showed retention close to the soil column inlet, and the rate of deposition decreased with depth. Low reduction rate of bacteria of the soil columns with plant root and with void root channel indicated the presence of macrospores in the soil created by deep corn root system.
F. Amiri, T. Tabatabaie, S. Valipour,
Volume 22, Issue 1 (Spring 2018)
Abstract
The purpose of this paper was to assess the groundwater quality near Qaemshahr landfill site using the Iran Water Quality Index for Groundwater Resources-Conventional Parameters (IRWQIGC). In this study, samples were taken from 11 wells with three replications in February 2015 and water quality was assessed by evaluating nitrate, fecal coliform, electrical conductivity (EC), pH, total hardness, sodium absorption ratio, biological oxygen demand, phosphate, chemical oxygen demand, and dissolved oxygen parameters with the standard measuring methods; also, the quality of ground water was determined using the IRWQIGC. Statistical description of the parameters was performed using the SPSS software. Spatial extension mapping parameters were drawn using geostatistics extension with the ArcGIS software. The results of water quality assessment revealed that 0.15% of the area was classified as bad, 98.85% as relatively poor, and 1% as middle in terms of quality. The results of spatial dispersion also revealed that water quality from the South to the North and North East was reduced. Evaluating the changes in water quality near landfill sites showed that 2149.56 square meters of total area had a relatively poor potential for the region’s groundwater recharge.
A. Kavian , A. Alipour, K. Soleimani, L. Gholami,
Volume 23, Issue 1 (Spring 2019)
Abstract
Nowadays, acid rain serves as one of the most serious environmental problems has affected many regions in the world. This phenomenon is characterized by many environmental impacts, such as soil contamination and degradation. Acid rain immediately affects soil, causing soil particles to breakdown and be dispersed; this is the first step to initiate the soil erosion. Therefore, in this study, the effect of different pH levels of acid rain (at different levels) on the soil splash was investigated under laboratory conditions using a rain simulator and a cup splash. In the experiments, acid rains, with the pH values of 3.75, 4.25, 5.25 and normal rains at three intensities of 40, 60 and 80 mmh-1, were studied; finally, a number of 36 samples were taken for statistical analyses. SPSS 23 and EXCEL 2013 software and one way and two-way ANOVA were used for the statistical analysis at a confidence level of 95%. The results showed that at the intensities of 40 and 60 mmh-1, the splash rate was significantly different in all pH treatments, and the acid rain with pH of 3.75 showed the highest splash rate. However, no significant difference was found at the rain intensity of 80 mmh-1, despite the higher splash rate at the pH of 4.25 and 5.25 treatments. Also, the results of the comparison of the means showed that the soil splash rate was also increased with enhancing rain intensity. Finally, the two-way ANOVA test showed that the simultaneous interaction effects of the two factors of pH and rain intensity on soil splash was not significant.
A. R. Alipour, S. H. Mosavi, A. Arjomandi,
Volume 23, Issue 2 (Summer 2019)
Abstract
Increasing the productivity and conservation of limited water resources in the agricultural sector, especially in the agricultural sub-sectors, is closely related to the revision of the traditional approaches of production system in the agricultural sector of developing countries. The aim of this study was to develop the optimal combination of crop production in Varamin Agricultural and Animal Husbandry Complex as one of the leading agricultural units in the agricultural sector of Varamin County with the emphasis on increasing water use efficiency. For this purpose, the statistical data and information of the 2015-2016 crop year of the complex were used in the framework of the multi-criteria decision making model. The results showed that in the optimum crop pattern in this unit, the priorities of maximizing net energy production and the annual profit as the economic goals would be significantly aggregated with the goal of increasing water use efficiency. Accordingly, in the optimum condition, net energy production was increased by 10%, gross profit was improved by 4%, and water use efficiency was promoted by 15%. Therefore, according to the results, it is suggested that, in order to achieve the economic aspirations and increase water use efficiency in Varamin Agricultural and Animal Husbandry Complex, wheat, alfalfa, silage and maize corn, based on the values calculated in this study, constitute the main combination of the crop production pattern.
H. Aalipour, A. Nikbakht, N. Etemadi, M. Soleimani, F. Rejali,
Volume 23, Issue 2 (Summer 2019)
Abstract
Trees decline is a complex physiological disease that results from the interactions between several factors, one of which is heavy metal stress that ultimately leads to the death of trees. This experiment, which was conducted during 2016-2017 at the campus facility of the Department of Horticulture at Isfahan University of Technology, was conducted to investigate the effects of inoculation with arbuscular mycorrhizal fungi (AMF) (Rhizophagus intraradices and Funneliformis mosseae inoculated, and the combination of both species) and plant growth promoting rhizobacteria (PGPR), Pseudomonas Flourescens, on the growth responses of Arizona cypress (Cupressus arizonica G) to different concentrations of cadmium (0, 5, 10, 15, 20); this was done as a factorial experiment based on a completely randomized design, with three replications. The interactions between AMF, PGPR, and cadmium on potassium and iron concentration, height, and dry weight of Arizona cypress seedlings were significant. By increasing the concentration of cadmium in most of the treatments, the colonization, phosphorus, potassium and iron concentrations, height and dry weight of the shoot Arizona cypress seedlings were decreased, while the percentage of electrolyte leakage and proline content were increased. The AMF-inoculated plants increased phosphorus, potassium and iron concentrations, Height, shoot dry weight, proline content and reduced electrolyte leakage percentage, as compared to non-mycorrhizal (control) plants. In plants inoculated with both microorganism (mycorrhizal fungi and Pseudomonas), there was a positive effect regarding the concentration of nutrients such as potassium and iron; there was also the improvement of growth characteristics such as height and dry weight of the seedlings, as well as the appearance and freshness of the plant. The results, therefore, showed that inoculation of Arizona cypress seedlings with the combination of mycorrhizal fungi and Pseudomonas fluorescens bacteria could have a positive effect on the growth and survival of this tree under Cadmium stress condition.
H. Alipour, A. Jalalian, N. Honarjoo, N. Toomanian, F. Sarmadian,
Volume 25, Issue 4 (Winiter 2022)
Abstract
Dust is one of the environmental hazards in arid and semi-arid regions of the world. In some areas, under the influence of human activities, dust is contaminated by heavy metals. In this study, the dust of 10 stations in the Kuhdasht region of Lorestan province in four seasons of spring, summer, autumn, and winter, as well as adjacent surface soils (a total of 40 dust samples and 10 surface soil samples), were sampled and some heavy metals including Zn, Pb, Cd, Ni, Cu, and Mn were analyzed. The results revealed that the amount of Zn in the dust was much higher than the surface soils of the region (800 vs. 85 mg/kg). Contamination factor index calculation indicated that high contamination of Cd and Zn, significant contamination of Ni and Pb, and lack of contamination by Cu and Mn. The annual enrichment factor of Cd (33.9) and Zn (24.6) was very high, Ni (11.3) was significant, Pb (6.4) was moderate, Mn (1) and Cu (0.82) were low. Based on the enrichment factor values, Cd, Zn, and Ni seem to have a human origin, Pb has both human activities and natural origin, and Cu and Mn have an only natural origin.