Search published articles


Showing 2 results for Amirpour robat

A. Jalalian, M. Amirpour Robat, B. Ghorbani, S.h. Ayoubi,
Volume 11, Issue 42 (winter 2008)
Abstract

  Soil erosion is one of the most threatening issues for crop production and environmental qualities, especially for soil and water resources. Appropriate knowledge about total soil loss and runoff is valuable in order to perform soil and water conservation practices in watersheds. EUROSEM, "a single event, dynamic and distributed model," was developed to simulate soil loss, sediment transportation and deposition by rill and interrill processes. This study was conducted to evaluate EUROSEM model in order to simulate soil loss and runoff in Sulijan sub-basin, which covered 20 ha, from Charmah-Bakhtari province. The sub-basin was divided in to 19 homogeneous elements using topographic, land use, plant cover, slope and channel properties throughout it. Soil, plant cover, land surface and climate characteristics were measured and evaluated by field observations and laboratory measurements. Actual soil loss and runoff for studied events were determined by direct measurement in the field. After sensitivity analysis, calibration and validation steps were carried out to simulate runoff and soil loss. The results of sensitivity analysis showed that the EUROSEM model for predicting runoff was more sensitive to hydraulic conductivity, capillary drive and initial soil moisture. On the other hand the model for predicting soil loss was more sensitive to Manning's coefficient and soil cohesion. The results showed that the EUROSEM model was able to simulate well the total runoff, peak of runoff discharge, total soil loss and time for the peak of soil loss discharge. But that could not simulate well the peak of soil loss discharge and time for the peak of runoff. Although it seems that EUROSEM is able to predict soil loss and runoff partially well in individual events, it is necessary to evaluate the efficiency of the models for different basins with varieties of soil, plant cover and climatic properties.


H. Naghavi, A. Sabbah, M. Amirpour Robat, F. Nourgholipour,
Volume 22, Issue 2 (Summer 2018)
Abstract

This study was conducted based on a randomized complete block design and a factorial experiment with three replications in regions to investigate the effect of different rates and times of nitrogen on the quantitative properties of safflower. The first factor was different nitrogen rates including 0, 60, 120 and 180 kg ha-1 , and the  second one was nitrogen application time including seed sowing, rosette and the before flowering stage; these were  1-0-0, 1/3-2/3-0, 2/3-1/3-0 and 1/3-1/3-1/3 with the  Goldasht variety. The results showed that nitrogen rate had a significant effect on all studied traits. Nitrogen application time also had a significant effect on capitulum number and yield at p>0.99 and on the length of plant, nitrogen adsorption, agronomic efficiency and apparent recovery at p>0.95. So based on the results, the recommended consumption of 60 kg/ha N was split into three equal amounts at the time of planting, rosette and flowering or 1/3-2/3-0, in Kerman area.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb