Search published articles


Showing 2 results for Azarnivand

E. Zandi Esfahan, S. J. Khajedin, M. Jafari, H. Karimizadeh, H. Azarnivand,
Volume 11, Issue 40 (summer 2007)
Abstract

In order to determine the reciprocal relationship between the important characteristics of soil and the growth of Haloxylon ammodendron (C.A. Mey) plant in segsi plain of Isfahan., ordination method was used. The study was performed through the stratified random sampling and the regions were separated according to the plant age and physical physiognomy, then 10 samples of Haloxylon ammodendron (C.A. Mey) of the same age were selected in each region. Meanwhile, factors such as height, canopy cover area, canopy cover perimeter, canopy cover diameter, and basal area were considered. Also, 30 profiles from viewpoint of growth situations in 10 different regions were dug. Soil characteristics such as : pH, Ec, total soluble Ca2+ and Mg2+, Cl-, CO3--, HCO3-, SP%, CaCO3%, CaSO4%, organic matter%, total nitrogen percentage, phosphorous, Na+, K+, SAR, and hardpan depth were measured. Data was analyzed using ordination method. According to the results, samples of the same age showed significant differences in plant features. Other results showed that physical characteristics such as depth of hardpan from soil surface, SP%, and chemical characteristics such as salinity, alkalinity and total nitrogen had the highest effect on qualities of this kind of plant. In other words, the results mentioned above showed the important role of Haloxylon ammodendron (C.A. Mey) in sharp increase of salinity and alkanity in it's stratum.
B. Noori, H. Noori, Gh. Zehtabian, A. H. Ehsani, H. Khosarvi, H. Azarnivand,
Volume 23, Issue 4 (winter 2020)
Abstract

Due to the impact of climate change on the plant water demand and the availability of water, especially in drylands, it is vital to estimate the evapotranspiration rates accurately. In this study, the vegetation status in the marginal desert areas of Varamin Plain was studied, and the actual evapotranspiration and water demand of intercropped farms were assessed. This study also evaluated the potential relationship between the evapotranspiration of different agricultural lands and their vegetation index using remote sensing techniques. A collection of satellite images from Landsat 7 in consecutive seasons was used to determine the greenness rate of marginal desert areas during 2013 and 2014. ENVI software was used for the image processing, which included geometric corrections and atmospheric corrections, to develop NDVI maps. Also, weather data and crop properties of Varamin Plain were collected, and the actual evapotranspiration rate of plant cover was estimated using CropWat. The correlation between NDVI extracted from satellite images and the evaluated evapotranspiration rate was assessed. The results showed a strong relationship between evapotranspiration of heterogeneous agricultural lands and NDVI. This confirmed that the NDVI derived by remote sensing approach could be a useful index to evaluate vegetation status and water demand of farmlands in the desert borders.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb