Search published articles


Showing 2 results for Bagherzadeh

S. Barkhordari, M. Hashemy Shahdany, A. Bagherzadeh Khalkhali,
Volume 23, Issue 3 (Fall 2019)
Abstract

Seepage losses and poor operational activities are the two main source of water losses throughout the agricultural water conveyance and distribution systems in irrigation districts. This study aims to investigate the performances of two strategies of “canal lining” and employing the “Canal Automation” in order to reduce the losses mentioned above. The investigation was carried out on a couple of main canal reaches of Moghan Irrigation Districts. Two numerical models were simulated by Seep/w software to compare the seepage rate between the canal with and without concrete lining. The results reveal that the ability of concrete lining to reduce seepage losses along the canal is about 10%. Performance assessment of the “Canal Automation” strategy to minimize operational losses within the main canal was carried out employing Model Predictive Control (MPC). The results of the latter strategy indicate that employing the MPC not only reduces the operational losses along the canal by 15% but also improves the operation of the main canal so that the minimum efficiency and adequacy performance indicator was obtained 100% and 83% respectively. Therefore; due to Executive considerations and financial constraints in the same cases, the potential of each of the two strategies can be considered to reduce the conveyance and distribution losses and ultimately choose the most suitable option.

R. Daneshfaraz, M. Bagherzadeh, M. Jafari,
Volume 26, Issue 4 (Winiter 2023)
Abstract

The present study aimed to investigate and compare the laboratory results of energy dissipation and length of vertical Drops equipped with horizontal Screens with the results of standard stilling basins of type one, two, three and four simple vertical Drops. For this purpose, 64 different experiments were performed on vertical Drops equipped with a horizontal Screen at relative distances of 0, 0.25, 0.5, and 0.75 from the edge of Drops, with a porosity of 40 and 50% of the Screen and a height of 20 cm .The results showed that in all experiments and at a constant flow, increasing the distance of the Screen from the edge of Drops does not have much affect the energy dissipation of the current. On average, the downstream energy dissipation for the present study has increased by more than 20% compared to the simple vertical Drop, which can be an excellent alternative to the downstream stilling basin. Among the models of the present study, the most significant reduction in the relative length of the Drops was achieved by the vertical Drops model with a horizontal Screen with a relative distance of 0.75. On average, when using horizontal Screen at four relative distances from the edge of Drops, the relative length of the Drops is reduced by more than 73% compared to the vertical Drops equipped with a standard stilling basin.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb