Search published articles


Showing 3 results for Chezgi

M. Hayatzadeh, J. Chezgi, M.t. Dastorani,
Volume 19, Issue 72 (summer 2015)
Abstract

Since the development of surface water control needs accurate access to flow behavior of sediment rates, the lack of sediment measurement stations, the novelty of most stations and the lack of statistics on the deposit make it difficult to properly evaluate and simulate the flow behavior and their sediments. In a watershed, the morphological characteristics and sediment load of flow affect each other. It is, thus, important to know about the extent of this relationship to manage and control the flow in downstream areas. In the present study, using artificial neural networks and sediment rating regression methods based on the data from 136 events and also morphological parameters, we have attempted to predict the sediment load of Bagh Abbas basin. In the first step, we used flow data to predict the sediment load of both methods, and then basin morphological characteristics such as the compactness factor and form factor were added to the models. The results of this study showed that by using neural networks of Multilayer Perceptron (MLP) type with Levenberg – Marquardt algorithm and the stimulation function of tangent Sigmoid with two hidden layers and four neurons in each layer, we can predict suspended sediment discharge rate with a sufficient accuracy. Accuracy of the results obtained from the ANN method was higher than the accuracy of rating curve method. In the evaluation of NGANN & GANN network methods and SRC & MARS regression methods, correlation coefficients were respectively calculated as 0.94, 0.93, 0.767, 0.766, and root mean square errors (RMSE), 0.45, 0.49, 2.3 and 2.3. Nash coefficient (NS) was calculated respectively as 0.71, 0.58, 0.27 and 0.23. Therefore, the most efficient method among the four models is artificial neural network combined with morphological data (GANN). Furthermore, the findings of the study show that adding geomorphological parameters to sediment rating has little effect on the model performance.


J. Chezgi, H. Maleki Nezhad, M. R. Ekhtesasi, M. Nakhaei,
Volume 22, Issue 1 (Spring 2018)
Abstract

Underground dams are structures built in underground and are capable of saving and making the underground water available. In this research, by using the SWOT analysis model, suitable locations were investigated for the development of an underground dam in the Keriyan area of Hormozgan province.  At first, the necessary data and information were provided by visiting the region and presenting a questionnaire to the residents of the area and experts to investigate the strengths, weaknesses, opportunities and threats in the region for the underground dams. In the final step, by using the SWOT model and QSPM matrix, a comprehensive and appropriate strategy for underground dams was determined. The results showed that among the internal factors, not decreasing the volume of the reservoir due to deposits and reducing the evaporation from the reservoir with a final value of 0.85 and 0.66, and among the external factors, the willingness and cooperation of the relevant organizations and the disruption of downstream water rights with a final value of 0.68 and 0.66 had the greatest impact on selecting the strategy. Based on the results related to the internal and external factors, the strategy was placed in the maximum-maximum quadrant; in line with the strategy, by using the strengths and opportunities, the weaknesses should be overcome and the threats should be tackled. Some strategies were presented. In order to prioritize these strategies, the quantitative matrix QSPM was used. Finally, the hydrological, economic, social and environmental evaluating strategies of underground dams, before and after the construction, with a final score of 19.3 were prioritized.


J. Chezgi, M. Asiyaei,
Volume 25, Issue 1 (Spring 2021)
Abstract

Erosion causes the reduction and degradation and the soil fertility; one of its most important consequences, endangering the food security of the inhabitants of the area. Therefore, to reduce erosion, it needs to be controlled and managed using good soil conservation methods. It is only necessary to manage and control the full impact of the factors affecting the soil first. If there is a critical state of erosion in the four watersheds, identifying the precise location of erosion will be done quickly and with less cost; thus, further erosion control and counter-operation will be feasible. In this study, geographic information system and decision making models of AHP and ANP in Bagheran region of Birjand were used to determine the erosion prone areas. First, 10 effective criteria including rain, slope, slope direction, soil, geology, permeability, vegetation, land use, distance from road and village, were determined on the erosion in the area based on the expert opinion and library studies. Next, the questionnaires were sent to experts to explore g the impact of the criteria on erosion; after completing the questionnaires based on Expert Choice and Supper Decision software, the relative importance of the criteria was obtained. The maps were then compiled and integrated according to the relative importance of the criteria. Rainfall factor had the greatest impact on the erodibility of the area in the AHP method with the relative importance of 0.21 and the   vegetation criterion with the weight of 0.158 in the ANP method had the most impact on the determination of erosion prone areas. Finally, the erodibility map of the area was obtained based on the presented models. Subsequently, the region was classified into five classes of erosion susceptibility, with areas of moderate sensitivity having the most area in both models. In the lower and upper classes, the ANP method performed better; in the middle classes the AHP method performed better.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb