Search published articles


Showing 2 results for Dehgan

S. H. Tabatabaei, F. Mostashfi Habibabadi, M. Shayannejad, M. Dehgani,
Volume 20, Issue 75 (Spring 2016)
Abstract

The main objective of this study was evaluation of integrated management and mixing saline/fresh water on soil salinity distribution. For this purpose, a field was selected and 32 plots were made in it with a 6 m×2.5 m size. A split plot experiment was employed with two sunflower varieties (Alstar and Hisan33), four irrigation schemes (CIS) and four replications. Irrigation schemes being applied as treatments are: T1: every other irrigation with saline water (11 dS m-1) and fresh water (2 dS m-1) (every other irrigation), T2: fresh water - saline water, T3: mixed irrigation and T4: saline water - fresh water. Soil samples were collected from depth of 0-20, 20-40 and 40-60 cm in the early, mid and end of the irrigation season. The samples were analyzed for EC, Ca, Mg, Na and Cl. The result showed that soil salinity in depth of 40 cm is greater than salinity in depth of 20 and 60 cm in all treatments and for both sunflower varieties, in all growing stages. The maximum salinity concentration was observed in T2 among all treatments. Increasing irrigation depth has increased the soil extract’s Cl and Na in all treatments during growing season to 50 and 75 meq/L, respectively. The effects of CIS treatments are statistically significant on Ca and Mg in Alstar, and in all regimes affect on different depths. The minimum value of EC and maximum yield was observed in T4, T3, T1 and T2, respectively.


T. Dehgan, M. A. Gholami Sefidkouhi, M. Khoshravesh, N. Samadani Langroudi,
Volume 25, Issue 1 (Spring 2021)
Abstract

In this research, the nitrate removal by beech leaves was investigated in batch and column systems. The batch experiment was performed to address the effect of pH, contact time, adsorbent dosage and initial nitrate ion concentration on the nitrate removal. The results showed that with an increase in pH, the removal efficiency and adsorption capacity were decreased and nitrate removal by millimeter and nano adsorbent beech leaves reached equilibrium 120 and 90 minutes after experiment, respectively. With an increase in the nitrate concentration, the removal efficiency was decreased from 59.2% to 39.7% and 82.1% to 69.9% for millimeter and the nanoparticles of Beech leaves, respectively. In fixed-bed column adsorption experiments, the flow rates of 5, 8 and 11 ml/min and the nitrate concentration of 15, 50 and 120 mg/L were studied. The results showed with an increase in the nitrate concentration from 15 to 120 mg/L, the saturation time was decreased from 240 to 150 and 360 to 270 minutes for millimeter and nanoparticles of Beech leaves, respectively. Thomas, Dose-response and Yoon-Nelson models were fitted to the results of the continuous experiments. The Thomas model fitted the experimental data with high accuracy. Compared to the adsorbents, nano-adsorbent had more adsorption capacity in the batch and column systems. 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb