Search published articles


Showing 3 results for E. Dordipour

M. Bahreini Touhan, E. Dordipour, S. A. Movahedi Naeini,
Volume 14, Issue 53 (fall 2010)
Abstract

Kinetical study on non-exchangeable potassium (NEK) release is necessary for management, optimum use of soil resources, availability and supplying power of potassium. Information about NEK release rate in Golestan soils is limited. The aim of this study was to investigate the NEK release of saturated soil sample by calcium using acid citric and CaCl2 extractants from 2 to 1844 h duration in 12 dominant soil series in Golestan province. Different soils indicated various responses to continuous extraction. The rate of K released in different soils was lower in CaCl2 than that of Citric acid. Potassium release was faster in earlier periods of the extraction in all soils followed by a lower release rate. Due to high coefficient of determination and low value of the standard error of the estimate, the NEK release kinetic by citric acid and CaCl2 were well described by Elovich and Parabolic diffusion equations and Power, First order and Elovich equations, respectively. Therefore, NEK release rate was controlled by K diffusion from weathered surface of soil minerals.
A. Farshadirad, E. Dordipour, F. Khormali1 ,
Volume 16, Issue 59 (spring 2012)
Abstract

Non-exchangeable potassium (NEK) release is necessary to supply potassium for plant in different soils. A few studies on the NEK release have been done in soils and particularly on its components. This study was intended to investigate the NEK release from soil and the components of clay and silt through successive extractions with oxalic acid (0.01 M) over a period of 1844 (h) in 4 soil series of Golestan province. The amount of NEK release from whole soil, silt and clay fractions after 1844 (h) were 242 to 450, 380 to 550 and 105 to 199 mg kg-1, respectively. The cumulative rates of NEK release after 1844 (h) were well described by simplified Ellovich, parabolic diffusion and power function equations. The rate of K release was high initially, and then decreased gradually in all soils and in their silt and clay fractions. The amount of released NEK (with high rate) consisted of lower percentage of total NEK, but in spite of less amount, this K form plays a vital role in K dynamic and soil fertility.
M. Liaghat, F. Khormali, S. A. Movahedynaeini, E. Dordipour,
Volume 16, Issue 61 (fall 2012)
Abstract

Studies on the soils of western Golestan province show that regardless of increased rain and presence of clay minerals with high cation exchange capacity, potassium extractable with ammonium acetate is low. In order to find the reason for this low amount of available K, clay minerals and micromorphology of the soil porosity were studied. Twenty disturbed and undisturbed samples from each horizon were taken for physicochemical properties, mineralogy and micromorphological studies. Four selected profiles included Gypsic Aquisalids, Typic Endoaquepts, Typic Calcixerolls and Typic Hapludalfs. The results showed that in addition to the clay content and type of clay minerals in soils that can affect soil available K (Kava.), it seems soil porosity can also affect Kava. mainly through their effects on extension of roots, water and nutrients transmission. Favorable content of clay and dominance of smectites in Mollisols and also higher porosity and dominance of channel porosities caused the presence of higher Kava, in these soils. presence of HIS. poor soil drainage, reduction of Fe3+ in smectite crystal lattice in Inceptisols, and also less amount of porosities caused the presence of higher potassium fixation and reduction of Kava. in these soils.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb