Search published articles


Showing 4 results for Ehsani

H. Ezzatpanah, M. R. Ehsani, H. Lamea,
Volume 9, Issue 2 (summer 2005)
Abstract

In this research some properties of the casein micelles in the raw and pasteurized milk were studied by electron microscopy. SEM and TEM were used to evaluate the differences in acidified casein micelles of raw and pasteurized milk at the Iso Electric Point (pH=4.6). Milk samples were taken from research pilot plant of The College of Agriculture. Milk was pasteurized by the L.T.L.T. method in the same pilot plant. The samples of raw and pasteurized milk were divided into two parts. One part of raw and pasteurized milk was acidified to the Iso Electric Point of caseins (pH=4.6) by lactic acid (9%) and then sample preparation for electron microscopy was done. According to the previous findings, results indicated that in the native pH, specially in fresh raw milk casein micelles were in spherical and individual form with the smooth surface. Aggregated casein micelles were present of acidified samples of the raw and pasteurized milk. Aggregation was the result of neutralization of electric charges in the isoelectric pH of casein and partial removal of micellar calcium phosphate. Results of both electron microscope confirmed each other and effects of heating on increasing of the casein micelle size during pasteurization were seen.
M.r. Ehsani, H. Ezzat Panah, H. Lamea,
Volume 9, Issue 3 (fall 2005)
Abstract

In this study changes in microstructure of casein micelles in raw and pasteurized milk were investigated by SEM and TEM. Milk was pasteurized by L.T.L.T. method (Temperature: 63 oC_ Time:30 minute).Samples of raw and pasteurized milk were taken from research pilot plant of The College of Agriculture. Each sample was divided into two parts. One part of each sample was directly prepared for SEM and TEM, whereas the second part were renneted at 2 oC and kept at this temperature for 24 h. and then prepared for evaluation by electron microscopes. Results indicated that in native state, particularly in raw milk casein micelles are in spherical shape with smooth surface and in the single form. The samples, which stored in the cold were under the effect of the rennet, encounter of filamentous status that might be due to the changes occurred in kappa-casein following the action of rennet along with partial removal of beta-casein and micellar calcium phosphate. Micrographs of casein micelles in pasteurized milk indicated that thermal condition during pasteurization had influenced on increasing of casein micelles size.
B. Noori, H. Noori, Gh. Zehtabian, A. H. Ehsani, H. Khosarvi, H. Azarnivand,
Volume 23, Issue 4 (winter 2020)
Abstract

Due to the impact of climate change on the plant water demand and the availability of water, especially in drylands, it is vital to estimate the evapotranspiration rates accurately. In this study, the vegetation status in the marginal desert areas of Varamin Plain was studied, and the actual evapotranspiration and water demand of intercropped farms were assessed. This study also evaluated the potential relationship between the evapotranspiration of different agricultural lands and their vegetation index using remote sensing techniques. A collection of satellite images from Landsat 7 in consecutive seasons was used to determine the greenness rate of marginal desert areas during 2013 and 2014. ENVI software was used for the image processing, which included geometric corrections and atmospheric corrections, to develop NDVI maps. Also, weather data and crop properties of Varamin Plain were collected, and the actual evapotranspiration rate of plant cover was estimated using CropWat. The correlation between NDVI extracted from satellite images and the evaluated evapotranspiration rate was assessed. The results showed a strong relationship between evapotranspiration of heterogeneous agricultural lands and NDVI. This confirmed that the NDVI derived by remote sensing approach could be a useful index to evaluate vegetation status and water demand of farmlands in the desert borders.

S. Jamali, H. Banejad, A. Safarizadehsani, B. Hadi,
Volume 26, Issue 1 (Spring 2022)
Abstract

This research was conducted to study the effect of deficit irrigation and saline water on yield and yield components of Peppermint in the experimental research greenhouse of Ferdowsi University of Mashhad from 2018 to 2019. This research was performed as a factorial experiment based on the randomized complete design with three replications. In this research, irrigation levels consist of 4 levels (100 (I1), 80 (I2), 70 (I3), and 55 (I4) percent of FC) and saline water factors consist of 4 levels (0.9 (EC1), 1.9 (EC2), 2.5 (EC3), and 3.4 dSm-1 (EC4)). The result showed that a decrease of the water to 15, 30, and 45 percent have resulted in the reduction of shoot fresh weights (to 15.8, 28.4, and 30.1 percent), shoot dry weights (to 7.1, 11.5, and 11.5 percent), and root dry weights (to 4.6, 9.2, and 9.2 percent), respectively. Also, results showed that irrigation with EC2, EC3, and EC4 has resulted in a decrease in shoot fresh weights (to 12.7, 28.5, and 34.0 percent), shoot dry weights (to 3.6, 11.6, and 11.6 percent), and root dry weights (to 6.7, 12.4, and 14.6 percent), respectively. The result indicated that interaction effects of salinity and water stress decreased peppermint water productivity, as the highest and lowest peppermint water productivity with 3.54 and 2.06 Kgm-3 were in the EC1I4 and EC3I1 treatments, respectively. Results revoluted that maximum dry yield and peppermint water productivity were in the EC1I4, so this treatment was recommended for irrigation of peppermint.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb