Search published articles


Showing 5 results for Esfandiarpour

S. Sanjari, M. H. Farpoor, I. Esfandiarpour Borujeni, M. K. Eghbal,
Volume 15, Issue 58 (winter 2012)
Abstract

Paleosols provide invaluable data on paleoclimatic conditions of the area. These soils widely exist in central Iran. Micromorphology and clay mineralogy are among valuable techniques which are useful for interpretation and identification of these soils. The present research was performed to compare the micromorphology and clay mineralogy of paleosols and modern soils of Jiroft area. After field studies, 4 pedons (located on different geomorphic surfaces including stable mantled pediment, stable and unstable transitional surfaces of pediment and alluvial plain, and stable surface of alluvial plain) were sampled for physicochemical, micromorphological, and clay mineralogical analyses. Clay coatings in argillic horizons of paleosols were found during micromorphology observations. On the other hand, clay coatings in present soils were only found in natric horizons, which were attributed to high amounts of Na in these soils. Moreover, smectite, palygorskite, illite, chlorite, and kaolinite clay minerals were recognized in paleosols, but chlorite was not detected in modern soils. The presence of palygorskite in the soils under study was related to the stability of geomorphic surface. Results of the present research showed that a more humid climate was present at the time of paleosols formation.
Y. Safari, I. Esfandiarpour Boroujeni,
Volume 17, Issue 65 (fall 2013)
Abstract

In order to study the precision of qualitative land suitability classification method for main irrigated crops (i.e. potato, sugar beet, wheat and alfalfa) in the Shahrekord plain, qualitative land suitability maps were obtained for all the studied crops according to representative pedon analysis using simple limitation method. In the next step, a regular grid sampling consisting of 100 sample points with a distance of 375 m was designed. Then all required analyses were done to recognize the suitability class of these sites for each land use. Finally, land suitability results for all the observation points in each map unit were compared with the results of its representative pedon. The results showed the average of measured compatibility between representative pedon and other observation points in each map unit in class and subclass levels was about 60 % and 38 %, respectively. Due to the generalization of representative pedon analyses to all unit area, the use of soil map units as land suitability units may lead to unsatisfactory results. Therefore, the use of representative pedon is not recommended in sustainable land management and precision agriculture. However, new techniques like geostatistics can be used to improve the conventional soil mapping methods.
I. Esfandiarpour Boroujeni, Y. Safari,
Volume 18, Issue 67 (Spring 2014)
Abstract

Comparison of the land suitability variations among the soil map units in viewpoint of pedodiversity indices may provide a good assessment of the soil mapping precision. The main objective of this study was to assess the significance of functional pedodiversity thorough two detailed map units for irrigated wheat and potato for class and subclass levels of suitability in the Faradonbeh plain, using Shannon and Simpson indices. First, soil samples at 35 and 47 sampling sites in the D and E map units, respectively, were collected from the depths of 0-25, 25-50, 50-75 and 75-100 cm. Then, the qualitative land suitability class and subclass of all sampling points for each studied land use, was evaluated based on simple limitation method. Although both indices showed higher values in the subclass level of suitability, but the average functional pedodiversity of the studied map units, indicate a significant difference (95% confidence level), just in this suitability level. It was observed that the significance of the pedodiversity indices is not influenced by the land use type or the analyzed diversity index. Hence, as a supplementary procedure to study the intra-unit variation of the soil maps, use of diversity indices may provide some worthwhile information
M. Mosalaei, H. Shirani, V. Mozafari, I. Esfandiarpour,
Volume 18, Issue 70 (winter 2015)
Abstract

Salinity and ions toxicity are one of the main problems of agricultural lands in arid and semi-arid regions, such as Iran. In addition to the salinity problem, some other marks like boron toxicity in crops have been seen in Hossein Abad area as one of the main agricultural regions of Yazd. Therefore, this study intends to evaluate and analyze spatial variability of soil salinity as an aspect of soil degradation, and prepares soil salinity and boron maps. A regular grid sampling scheme was done through a 150 m interval. Salinity and boron were measured at the depth of 0 to 30 cm. Totally 104 samples were measured. After statistical analysis of the data and studying their distribution, Kriging estimator was used for mapping the mentioned variables. Results showed that the region has a salinity problem and does not have any boron toxicity. According to the relationship of nugget effect and sill, there was a strong dependency among all the measured factors except for boron and pH factors. The least salinity was observed in cultivated areas due to the leaching process. The boron range was between 0.07 and 1.6 mg kg-1. Salinity and soil boron were significantly correlated at 99 % confidence level. Based on the Spearman and Pearson tests, there was a positive correlation between SAR and salinity at 99 % confidence level, which shows the region has more sodic salts than others. Also, pH of the region did not present any problem for growing crops.


F. Amirimijan, H. Shirani, I. Esfandiarpour, A. Besalatpour, H. Shekofteh,
Volume 23, Issue 3 (Fall 2019)
Abstract

Use of the curve gradient of the Soil Water Retention Curves (SWRC) in the inflection point (S Index) is one of the main indices for assessing the soil quality for management objectives in agricultural and garden lands. In this study Anneling Simulated – artificial neural network (SA-ANN) hybrid algorithm was used to identify the most effective soil features on estimation of S Index in Jiroft plain. For this purpose, 350 disturbed and undisturbed soils samples were collected from the agricultural and garden lands and then some physical and chemical soil properties including Sand, Silt, Clay percent, Electrical Conductivity at saturation, Bulk Density, total porosity, Organic Mater, and percent of equal Calcium Carbonate were measured. Moreover, the soil moisture amount was determined within the suctions of 0, 10, 30, 50, 100, 300, 500, 1000, 1500 KP using pressure plate. Then, the determinant features influencing the modeling of S Index were derived using SA-ANN hybrid algorithm. The results indicated that modeling precision increased by reducing the input variables. According to the sensitivity analysis, the Bulk Density had the highest sensitivity coefficient (sensitivity coefficient=0.5) and was identified as the determinant feature for modeling the S Index. So, since increasing the number of features does not necessarily increase the accuracy of modeling, reducing input features is due to cost reduction and time-consuming research.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb