Search published articles


Showing 30 results for Eslamian

Sayed Farhad Mousavi, Jafar Jamshidnezhad-Anbarany, Sayed Saeid Eslamian, Nasser Rostam-Afshar,
Volume 3, Issue 2 (summer 1999)
Abstract

Estimation of flood flow rate represents a method of preventing damages associated with this natural phenomenon. This estimation is one basis in the design of various hydraulic structures, dam spillways, watershed management and flood control. The maximum flow rate of floods is determined by methods such as Creager, Jarvis-Meyer, Cypress-Creek, and rational method. Rational-probability method is an alternative to estimate peak flood rates, and is expressed as:

 Q(y) = F. C(y). I(tc.y).A

 where Q is maximum flood flow rate (m3/sec) y is the return period (year) C(y) is runoff coefficient with a return period of y A is watershed area (km2) I is rainfall intensity (mm/hr) for a specified return period equal to time of concentration of the watershed and F is the conversion factor equal to 0.278 when the above units are used. The basic concept of this method is the same as that in the rational method except that the return period is also included in the equation. Usually, runoff coefficient, C(y), is determined empirically from tables cited in the literature (e.g., Chow et al., 1988). In the present research, data from 18 hydrometry and 6 rainfall-recording stations (located in Caspian - Sea watershed) were analysed using TR software. The Caspian - Sea watershed (which covers eastern and centeral parts of Iran's No. 1 main watershed) has the sub-basins of Atrak, Tadjan, Chalus, Sardabrood, Siahrood, Gorganrood, Safarood, Kesilian, Babolrood and Neka. Runoff coefficients with return periods of 2, 5, 10, 25, 50 and 100 years were determined for these sub-basins and iso-coefficient curves were plotted. The results showed that computed runoff coefficients were less than the values given in the literature because they are determined from observed flow rate and rainfall intensity in each catchment. It was also shown that runoff coefficient increased with increasing return periods. Application of the computed runoff coefficients in three sub-basins of the area resulted in more accurate estimations of maximum flood rate than when the values for these coefficients cited in the literature were applied.


S. Chavoshi, S.s. Eslamian,
Volume 3, Issue 3 (fall 1999)
Abstract

Designers of hydraulic structures are often faced with the problem of estimating flood frequencies at stream sites, where little or no flow information is available. A regional regression model is widely used which relates physical and climatological parameters to flow characteristics. In this study, a new method is used which is based on the station-year technique and combined records for several stream-flow gaging stations to make a single composite sample. This method, named ‘hybrid’, was proposed by Hjalmarson and Thomas (1992). It was applied to a group of records from 17 apparently homogeneous stream gaging stations to determine regional flood frequency equations. The study area consists of two adjacent basins, Gavkhoony and North Karoon in the central part of Iran. Using area and mean elevation of the catchments as the most important criteria in relation to peak discharge, the interactive process of the hybrid method was performed, resulting in two-parameter models of regional flood frequency. The performance of the hybrid method was evaluated by comparison with the regional relations determined from a multivariate regression. The comparison revealed that the accuracy of the hybrid method was significantly better than the regression method for low return periods.
S.s. Eslamian, V. Salimi, S. Chavoshi,
Volume 4, Issue 2 (summer 2000)
Abstract

Peak discharge is one of the basic parameters in the design of hydraulic structures. There are various methods for peak discharge determination. Regional flood frequency analysis is based on physical, climatological and hydrological characteristics of basins. The objective of this study is to examine different models for the estimation of quantiles for some catchments in western Iran (namely: Gharehsoo, Gamasiab, Kashkan, Seimareh, Sezar and Abshineh) for which only maximum daily mean discharge data exist. In this research, peak and maximum daily mean discharges for 11 stream gauging stations were collected for a 21-year period. The ratio of these two discharges (R) and mean and standard deviations of peak discharges and maximum daily mean discharges were computed. Catchment characteristics including catchment area, catchment perimeter, main channel length, mean elevation, mean slope equivalent rectangle length, circular ratio, Gravelius coefficient, drainage density, time of concentration, relief ratio and diameter of the circle having equal area with the catchment were computed. Linear regression analysis was performed between independent variables of the catchments and mean standard deviation of the parameter “R” to develop a relation. The results of this study can be applied to the estimation of extreme flow values for non-recording stream gauging stations (daily reading sites).
M.a. Izadbakhsh, S.s. Eslamian, S.f. Mosavi,
Volume 5, Issue 2 (summer 2001)
Abstract

Flood is one of the catastrophic events that has attracted the hydrologists’ attention. In this research one of the important flood indices, i.e. maximum-daily mean-discharge, was determined for several western Iran watersheds, namely, in the catchments of Gamasiab, Qarasou, Saimare, Kashkan, Sezar and Abshineh. Daily data were prepared from stream-gauging stations and a 30-year concurrent period was selected.

 Flood frequency analysis was performed using HYFA and TR computer programs and optimum distributions were chosen by goodness of fit tests. Extreme flow values having different return periods of 2, 5, 10, 25, 50, 100, 500 and 1000 years were calculated. Modeling was done with regional analysis using multiple regression technique between maximum-daily mean-discharge and physiographic characteristics of the basins. The most important parameter for the selection of the model was the adjusted coefficient of determination while significant level, standard error and observed discharger vs. computed discharge plot acted as controlling parameters. Finally, different models with different parameters were selected from power, exponential, linear and logarithmic forms. The results showed the power model to be the best among the four types. The main channel length, drainage density and time of concentration were the most effective parameters on flow. After analyzing the errors, it appeared that increasing the return period would cause an increase in the model error. At 1000-year return period, the error reached 32.2%.


S. S. Eslamian, S. Chavoshi Boroojeni,
Volume 7, Issue 1 (spring 2003)
Abstract

Numerous methods are used in the investigation of floods in catchments such as regional flood frequency analysis. Regional flood frequency analysis relies on physical, climatic and ecological characteristics of catchments and applies statistical methods to study flow records. Hosking and Wallis developed Probability Weighted Moments and presented L-moments statistics as a new tool for flood frequency analysis. In this paper, the theory of L-moments was used to study the flood frequency of central catchments of Iran. A number of 27 sites each with more than 5 years of observed data were studied. In the first step, the diagram of L-kurtosis versus L-skewness was used and proper distributions for each site were applied. In order to eliminate the heterogeneous sites, homogeneous tests based on D, H1, H2 and H3 criteria were performed indicating that two sites appeared to be heterogenous. Next, using Goodness of Fit Test, the best regional distributions were determined which are GL, GEV, GN, PE3 and GPA, respectively. Finally, quantile estimates for distributions accepted at a 90% level were presented.
S. S. Eslamian, A. Zarei, A. Abrishamchi,
Volume 8, Issue 1 (spring 2004)
Abstract

An approach for regional low flow frequency analysis is to use multiple regression techniques for obtaining relationships between low flows with specific return periods and catchments characteristics. In this paper, this method has been used. After single-site frequency analysis for 20 stream gauging stations, homogeneity test was performed. Regional relationships between low flows with return periods 2 , 5 , 10, and 20 years and catchments characteristics were derived. For this purpose, catchment area, mean elevation, minimum elevation, shape factor, main channel length, length of main chanel from catchment centroid to outlet, forest area, mean annual rainfall, and mean catchment slope as model inputs were examined and cachment area, mean elevation, and mean catchment slope entered to the models. Finally, the mean relative error of models for different return period, 2, 5, 10, and 20 years, was computed 41.1, 41.3, 45.0, 47.2 percent, respectively that in comparison with other studies, it displays smaller errors.
S Akhavan, J Abedi Koupaee, S.f Mousavi, K Abbaspour, M Afyuni, S.s Eslamian,
Volume 14, Issue 53 (fall 2010)
Abstract

Temporal and spatial distribution of water components in watersheds, estimation of water quality, and uncertainties

associated with these estimations are important issues in freshwater studies. In this study, Soil and Water Assessment

Tool (SWAT) model was used to estimate components of freshwater availability: blue water (surface runoff plus deep

aquifer recharge), green water flow (actual evapotranspiration) and green water storage (soil water), in Hamadan-Bahar

watershed. Also, the Sequential Uncertainty Fitting program (SUFI2) was used to calibrate and validate the SWAT

model and do the uncertainty analysis. Degree of uncertainty is calculated by R-factor and P-factor parameters. In this

paper, results of calibration and validation are given for the river monthly discharge. In most stations, especially in

outlet of the watershed (Koshkabad station), simulation of river discharge was satisfactory. Values of R-factor in

calibration of monthly runoff were 0.4-0.8. These small values show good calibration of runoff in this watershed.

Values of P-factor were 20-60%. These small values show high uncertainty in estimations. For most stations of the

watershed, lack of data on river-water withdrawal caused poor simulation of base-flow and therefore the P-factor values

were low. Nash-Sutcliff (NS) coefficient was 0.3-0.8 after calibration, which shows good model calibration of outlet.

This study provided good information on the components of freshwater availability at spatial (sub-basin) and temporal

(monthly) scales with 95% prediction uncertainty ranges. The results of uncertainty analysis of components of

freshwater availability show that uncertainty ranges of average monthly blue water are larger than the other

components, because of its sensitivity to more parameters.


J. Abedi- Koupai , S. S. Eslamian1, S. A. Gohari , S.a Gohari , R. Khodadadi ,
Volume 14, Issue 54 (winter 2011)
Abstract

Channel lining is essential to increase resistance against scour, reducing water losses and as a result increase water conveyance efficiency. Since the canal lining has significant costs, selection of type of lining must be made with great care and with considering engineering properties. One of the conventional lining for water conveyance cannel is concrete lining. Because of advantages of concrete lining including durability (about 40 years) and low maintenance costs, this type of lining is the best option in many regions, however the construction expenses is high. So far many researches have been published about the types and the durability of concretes containing synthetic pozzolans. Due to high production of wheat in our country, nano particles of wheat ash sheath (NPWAS) were used. In this study the mechanical properties of concrete (compressive strength, tensile strength and durability) incorporating nano-particles of wheat ash sheath were investigated. The results showed that the compressive and tensile strength of samples incorporating 20 percent of NPWAS has not statistically significant difference (P<0.05) with the values of tensile and compressive strength of control samples. Therefore, the optimum replacement percentage of NPWAS was 20 percent by weight of cement. Moreover, results of durability of concrete samples showed that concrete containing 20 percent NPWAS were more durable than control samples in the magnesium sulfate solution. NPWAS with having 90.56 percent of silicon dioxide, high pozzolanic activity and ability to perform substantial chemical reaction with calcium hydroxide would decrease porosity and increase resistance of concrete.
S. S. Eslamian, M. Ghasemi, S. Soltani Gerdefaramarzi,
Volume 16, Issue 59 (spring 2012)
Abstract

In this study, in order to determe low flow conditions in Karkhe watershed, 5 indices of Q7,10, Q7,20, Q30,10, Q4,3 and Q95 were used for analyzing 12 hydrometric station data in the years of 1345-46 to 1380-81. Discharge data homogeneity was performed by Run Test. The Q95 index was determined by flow duration curve (FDC) and other indices were determined using 4, 7 and 30-day low flow frequency analysis. After calculating the indices, periods of low flows were determined. The indices were regionalized by Kriging method. The results showed that for the most stations, low stream flows happened in the years of 1345-46, 1377-78, 1378-79, 1379-80 and 1380-81 and the percentages of stations having low flows in these years were 68, 92, 84, 75 and 59, respectively. According to the regional maps of low flows in Karkhe watershed, maximum low flows are located in central and southern areas and all of the mentioned indices decrease from south to the north of this watershed.
J. Abedi Koupai, S. S. Eslamian, M. Khaleghi,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract

Crisis of quality and quantity of water resources is one of the most important problems in arid and semi-arid areas such as Iran. Wastewater treatment and reuse as a potential source of water can not only compensate for the water scarcity but also can prevent the hazardous pollutants from entering the groundwater and surface water resources. There are various methods to improve water quality, among which method of filtration is an effective and efficient method to remove elements. The most important issue for filter system is the selection of adsorbent materials. In this work, the tire chips were used as adsorbent. Column adsorption tests in a pilot system were conducted in two distinct steps using two types of water, including salt water and industrial effluents. Each test was conducted as a factorial experiment with three factors based on a completely randomized design with three replications. Three factors were studied including particle size (2-5 mm and 3-5 cm), filter thickness (10, 30 and 50 cm) and sorbent contact time with solution. The results showed that adsorption rate increased by increasing the thickness of the filter and sorbent contact time with solution. The best performance of reducing the salinity was observed in the treatment with 50 centimeter thickness and 24 contact hours. The salinity of this treatment was reduced by 20.3 percent (in the test with salt water) and 11.2 percent (in the test with industrial effluents). This filter reduced the heavy metals of lead, zinc and manganese up to 99, 72.1 and 41.4 percent, respectively. Also, the performance of millimeter and centimeter particles did not show a significant difference. Generally, the tire chips showed a proper performance to improve the water quality especially for industrial wastewater.
R. Malekian, J. Abedi-Koupai, S. S. Eslamian, M. Afyuni,
Volume 17, Issue 63 (Spring 2013)
Abstract

Nitrogen (N) loss from irrigated cropland, particularly sandy soils, significantly contributes to nitrate contamination in surface and groundwater and increases N applications to crops. This is because negatively charged nitrate normally does not have much affinity to soil particles. To retard the movement of nitrate, materials should have high affinity for anions, which most naturally occurring minerals do not have. The cation-exchange properties of natural zeolites can be exploited to modify their surface chemistries so that other classes of compounds, particularly anions and non-polar organics are retained. In this study, the ability to remove nitrate from aqueous solutions with different Cl- concentrations using Iranian zeolite (Semnan) modified by hexadecyltrimethylammonium bromide in millimeter and nanometer particle sizes was determined and the equilibrium isotherms were characterized. The nitrate release as affected by time and ionic strength was also evaluated. It was demonstrated that SMZ is capable of adsorbing more than 60 mmol kg-1 and 80 mmol kg-1 nitrate in millimeter and nanometer sizes, respectively, and adsorbed nitrate can be easily released under different ionic strengths. The millimeter and nanometer-sized SMZ showed 26.7% to 82.3% and 37.8% to 85.5% nitrate removal efficiency, respectively. The average of nitrate released by millimeter-sized SMZ was 6.92 mmol kg-1 in deionized water while it was 14.68, 22.71, and 34.91 mmol kg-1 in releasing solutions with ionic strengths of 0.03, 0.1, and 0.3 M, respectively
Bita Moravejalahkami, Behrouz Mostafazadeh-Fard, Manouchehr Heidarpour, Saeed Eslamian, Jaber Roohi,
Volume 17, Issue 64 (summer 2013)
Abstract

Most furrow irrigation systems have low performance due to deep percolation at the upstream end and tailwater runoff at the downstream end of the field. To eliminate this problem improving furrow irrigation performance is necessary. Since the inflow discharge has high effect on infiltration along the furrow which consequently affects the application efficiency and water distribution uniformity, it would be important to apply different furrow inflow hydrograph shapes based on the field data such as field slope, soil texture and furrow length to save water. To produce different furrow inflow hydrograph shapes, an automatic valve which was connected to a stepper motor was designed to change the inflow discharge with time according to the desired inflow hydrograph shape. The experimental field was located at Isfahan University of Technology. A constant head water delivery system to the furrows including the automatic valve was installed in the experimental field and the tests were conducted for different inflow hydrograph shapes. The comparison of the measured furrow inflow discharges with the simulated furrow inflow discharges produced by the automatic valve showed that the automatic valve can produce different furrow inflow hydrograph shapes with high accuracy.
J. Abedi Koupai, M. Salehi-Sirzar, S. S. Eslamian, J. Khajeali, Y. Hosseini,
Volume 18, Issue 68 (summer 2014)
Abstract

In order to investigate the effect of pest and water stresses on different growing stages of cowpea (Vigna sinensis) and pest occurrence, an experiment was conducted in Khazaneh Research station of Isfahan University of Technology. The experiment was carried out in a factorial complete randomized block design, in two different farms, with and without insecticide application. The treatments included severe water stress (50% water requirement), moderate water stress (75% water requirement) in four stages of cowpea growth, the first stage (from seed germination until flower in, second stage (from flowering until pod-filling), third stage (from pod-filling until harvesting) and the whole period of cowpea growth, in three replications. There was a control treatment in each farm with no stress in the whole period of cowpea growth, in three replications. The results showed that water stress had no significant effect on percentage of protein and mineral material. Result also showed that water stress had a significant effect (P≤ 0.01) on population of insects. Water stress significantly (P≤ 0.01) reduced the population of nymphs and adults of Empoasca decipiens Paoli and leaf minor damages, but water stress increased population of Thrips tabaci Lind. Considering the duration of first stage of growth (63 days), it is concluded that this stage had less sensitivity to water stress than the other stages. In regions, where farmers encounter water shortage for cowpea planting, the best performance can be obtained when moderate water stress (75% water requirement) is applied at the first stage of growth.
R. Malekian, J. Abedi-Koupai, S. S. Eslamian,
Volume 18, Issue 68 (summer 2014)
Abstract

In this study, the effect of clinoptilolite zeolite, as a soil amendment, on the parameters related to water and nitrogen movement in soil was investigated. Parameter and uncertainty estimation in the unamended (control) and amended soil (Z), was performed using the sequential uncertainty fitting algorithm (SUFI-2) which is linked to LEACHN (in the LEACHN-CUP software). The goodness of prediction uncertainty was judged on the basis of P-factor and R-factor. P factor, R-factor, and Nash-Sutcliffe coefficient (NS) was obtained 0.71, 0.76, and 0.92, respectively, in the prediction of the accumulated drainage from control. The results in prediction of the accumulated drainage from Z treatment using hydraulic parameters obtained in control were satisfactory (P-factor = 0.87, R-factor = 0.78, and NS = 0.87). P-factor, R factor, and NS were 0.87, 1.36, and 0.91, respectively, in the prediction of NO3-N leaching at control. According to the P-factor and R-factor values (P-factor = 1, R-factor = 2.46), application of the control parameter ranges in the prediction of NO3-N leaching at Z treatment produced a large uncertainty. By adjusting the parameters in control for zeolite amended soil, the estimated values for denitrification rate, distribution coefficient, and soil/solution NO3-N nitrification rate were greater in zeolite-amended soil compared to control.
J. Abedi Koupai, S. S. Eslamian, S. Y. Hasheminejad, R. Mirmohammad-Sadeghi,
Volume 18, Issue 69 (fall 2014)
Abstract

Phytoremediation models are important to understand the processes governing phytoremediation and the management of contaminated soils. Little effort has been made for evaluating the potential of the phytoremediation of metals based on the mathematical models. Therefore, the purpose of this study was modeling the phytoremediation of the nickel-contaminated soils. For this purpose, a model was recommended for estimating the rate of the phytoremediation of nickel from the soil by means of relative transpiration reduction and concentration of nickel in the plant functions. To evaluate the model, soil was contaminated with different levels of nickel by nickel nitrate. Then, the pots were filled with contaminated soil and Basil (ocimum tenuiflirum L.) seeds were planted. To avoid the dry tension, the pots were weighed and irrigated to the point of field capacity (FC) at short time intervals (48 hours). The plants were harvested in four times. At each harvesting stage, the relative transpiration values and nickel concentration in the soil and plant samples were measured. The performance of the model was evaluated by statistical methods such as Maximum Error, Root Mean Square Error, Coefficient of Determination, Efficiency of Model and Coefficient of Residual Mass. Results demonstrated that in the case of nickel contamination in soil, changes in the relative transpiration of Basil can be measured by the two proposed models and the linear model (R2=0.94) has a better performance compared to the nonlinear one (R2=0.84). Also the model obtained from the combination of linear function and nickel's concentration in soil has a relatively good (R=0.7) fit with the measured values of the remediation rate of nickel in soil.


S. S. Okhravi, S. S. Eslamian, N. Fathianpour, M. Heidarpour,
Volume 19, Issue 74 (Winter 2016)
Abstract

In addition to kinematic description of biological reaction, flow pattern plays an important role in designing constructed wetlands. This study investigates the effects of flow distribution on constructed sub-surface horizontal flow wetland with a length of 26 m, width of 4 m and 1% bed slope in order to understand internal hydraulic functioning patterns. Inlet configuration is selected as a variable parameter. Three different cases of inlet and outlet configurations were 1) midpoint, 2) corner, and 3) uniform. Outlet has been fixed in all configurations. Uranine tracer was used to determine the influences of flow distribution by drawing hydraulic retention time curve in different cases. Results showed that mean residence times for each configuration were equal to 4.53, 3.24 and 4.65 days, respectively.  Retention time distribution curve provided conditions, not only for showing dispersion patterns throughout system but also for interpreting hydraulic parameters like hydraulic efficiency and effective volume. According to the retention time curve, effective volume was 87.5% in configurations 1 and 3, and 62.1% in configuration 2 following numerous short-circuiting ratios. Finally, the best configuration of inlet-outlet layout to improve the performance of effluent treatment and use the geometry effectively was found to be the uniform-midpoint based on physical experiments followed by midpoint–midpoint as the second best.


R. Mollaei, J. Abedi Koupai, S. S. Eslamian,
Volume 20, Issue 75 (Spring 2016)
Abstract

Water scarcity forced farmers to use wastewater as water source, without considering its effects on environment and resultant contamination of soils and plants especially with heavy metals. The objectives of this study are to evaluate the application effects of zeolite as soil amendments on the uptake of Cd by spinach (Spinach Oleares L.) irrigated with wastewater (containing 10 ppm Cd). Different levels amounts of zeoilte (0, 1% and 5% w/w) were added to the soil and the experiment was conducted as a completely randomized design in a green house with 3 replications. The results indicated that, the addition of zeolite 1% (w/w) in soil treated with wastewater reduced cadmium concentration in plant, and consequently the percentage of extractable Cd using DTPA was decreased. However, application of zeolite 5% (w/w) increased the soil salinity, and as a result increased Cd concentration in the plant but this increase was not statistically significant, comparing with control. Spinach biomass did not differ significantly under irrigation with wastewater, but the Cd available in wastewater caused a decrease in Spinach biomass yield.


M. J. Zareian, S. S. Eslamian, H. R. Safavi,
Volume 20, Issue 75 (Spring 2016)
Abstract

This study investigated the effects of climate change on the evapotranspiration amount and water balance in the Zayandeh-Rud river basin. Two important weather stations; Isfahan and Chelgerd stations, located in the East and West of the basin respectively, were selected for investigation in this study. The combination of 15 GCM models were created based on the weighting method and three patterns of climate change including the ideal, medium and critical were defined. Using the proposed patterns, the effects of climate change on temperature and evapotranspiration in Isfahan station and precipitation in Chelgerd station were estimated under the A2 and B1 emissions scenarios. Two indices were considered to determine the sustainability of agricultural water consumption in the study area. Ratio of evapotranspiration in the East part of the basin to precipitation in the West part was defined as EPR index (Evapotranspiration-Precipitation Ratio), and the ratio of maximum agricultural water deficit to the amount of agriculture water need, was considered as maximum deficit index (MD). Results showed that the annual temperature would increase between 0.63-1.13°C in the eastern part of the basin. The west precipitation in the basin would reduce between 6.5-30% in the ideal to critical patterns. Summer season, showed the most amount of increase in the temperature, and winter season, showed the most amount of decrease in precipitation. The A2 emission scenario showed more temperature increase and more precipitation decrease in comparison with the B1 emission scenario and also indicated that the potential evapotranspiration would increase by 3.1 to 4.8% in the basin. The EPR index will increase between 13-52% and MD index will increase between 9-35% in Zayandeh-Rud river basin under different climate change patterns. The results revealed the imbalance between agricultural water use in eastern part and the precipitation in the western part of the basin. In other words, in these conditions, appropriate management strategies and planning should be implemented to ensure the sustainability of water resources in Zayandeh-Rud River Basin.


Sh. Kouhestani, S, Eslamian, A. Besalatpour,
Volume 21, Issue 1 (Spring 2017)
Abstract

This study aims to investigate the changes of minimum and maximum temperature variables under the impact of climate change for time period of 2015-2100 in the Zayandeh-Rud River Basin. The outputs of 14 Global Climate Models (GCMs) under three green-house emission scenarios (RCP2.6, RCP4.5, and RCP8.5) are employed from the Fifth Assessment Report (CMIP5) of Intergovernmental Panel on Climate Change (IPCC). A novel statistical downscaling method using a Bayesian Relevance Vector Machine (RVM) is used to project the impact of climate change on the temperature variables at regional scale. The results of the weighting average of the GCMs show that the various models have different accuracy in the projecting the minimum and maximum temperatures in the study area. The results demonstrate that the MIROC5 and CCSM4 are the most reliable models in projecting the maximum and minimum temperatures, respectively. The highest increase for both maximum and minimum temperatures was obtained in winter.
    On the annual basis, the maximum temperature will increase by 0.18-0.76 °C and 0.25-1.67 °C, respectively, in the near and long-term future periods under different emission scenarios. The annual minimum temperature will increase by 0.28 to 0.82 °C and 0.24-1.56 °C, respectively, in the near and long-term future periods. In a general view, changes in maximum temperature will be slightly higher than minimum temperature changes in the future.
 


Z. Dehghan, S. S. Eslamian, R. Modarres,
Volume 22, Issue 4 (Winter 2019)
Abstract

Regionalization is one of the useful tools for carrying out effective analyses in regions lacking data or with having only incomplete data. One of the regionalization methods widely used in the hydrological studies is the clustering approach. Moreover, another effective factor on clustering is the degree of importance and participation level for each of these attributes. In this study, it was tried to use a broad range of attributes to compare their performance in regionalization. Then, according to the importance and role of each attribute in regionalization, the appropriate weight for each of the attributes in each category was determined using the principal component analysis (PCA) method, and the effect of this weighting in forming the homogenous regions was investigated by the Ward's clustering method. In this regard, the maximum 24-hour rainfall data of 63 meteorological stations located in Urmia Lake Basin (ULB) was used in this study during a time period of 30 years (1979-2008). Furthermore, seven categories of attributes were defined in order to regionalize the rainfall. The results showed that by considering different attributes and combining them with each other, a different clustering is obtained in each category in terms of the number of clusters and stations. Among seven categories of attributes, it was found that the geographical and climatic-geographical categories of attributes showed a more appropriate clustering over the ULB. Additionally, the weighting of attributes could have more effect on improving homogeneity and forming the independent clusters in most cases in terms of the scattering of station and how to locate over the basin.


Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb