Search published articles


Showing 2 results for F. Nourbakhsh

F. Nourbakhsh, A. Jalalian, H. Shariatmadari,
Volume 7, Issue 3 (fall 2003)
Abstract

Cation exchange capacity (CEC) is one of the most important chemical characteristics which influences soil quality from different aspects. At the same time, CEC is an input parameter of many computer models being applied in soil science and agriculture. Methods of CEC determination are always time-consuming and laborious. Therefore, developing a model for CEC estimation from other soil properties is essential. The objective of this study was to understand the associations between CEC (as a dependent variable) and sand, silt, clay, organic matter and pH (as independent variables). In this study 464 soil samples from A, B, and C horizons of different soils were used. Results revealed that CEC is negatively correlated with sand (r=-0.389***) and is positively correlated with organic matter (r=0.772***), clay (r= 0.391***) and silt (r= 0.233***). No significant correlation was observed between CEC and pH. Stepwise regression analysis showed that both organic matter and clay enter the model and that coefficients of determination (r2) for the multiple models are higher than those of simple linear correlations. Other parameters could not increase the r2 considerably. Correlation analysis on data from A, B, and C horizons revealed that the CEC of organic matter in different horizons are not the same. Separation of Aridisols could not increase the r2 of the model and the accuracy of the estimations. Correlation studies in acid soils showed that the contribution of organic matter in CEC is much higher than that of clays.
E. Khadivi Borujeni, F. Nourbakhsh, M. Afyuni, H. Shariatmadari,
Volume 11, Issue 1 (spring 2007)
Abstract

Application of sewage sludge on the farmland as a source of crop nutrient had recently received considerable attention. Some management practices may be required to control the accumulation of toxic elements including Pb, Ni and Cd. Sequential extraction gives useful information on plant bioavailability of the elements. The objective of this study was to investigate the cumulative and residual effects of sewage sludge application on the chemical forms and mobility factor of Pb, Ni and Cd. Zero, 25, 50 and 100 Mg ha-1 of sewage sludge were applied for 1, 2 and 3 consecutive years in a split plot design, with three replications. Soil samples were taken from 0-20 cm at the end of the third year of application. Different chemical forms of Pb, Ni and Cd were measured. Results revealed that the soluble form (SOL) of Ni and Cd increased whereas Pb soluble form decreased with increasing levels and years of application. Exchangeable (EXC), carbonate (CAR) and organic (ORG) forms of the three elements increased as levels and years of application increased. Occluded (OCC) form decreased for Pb, Ni and increased for Cd. Residual form (RES) of Pb increased while that of Ni and Cd decreased. A gereral increase was observed for available (DTPA-extractable) concentration of Pb, Ni and Cd. Relative distributions of different chemical forms were in the following order: Pb: OCC > RES> ORG> CAR> EXC> SOL, Ni: RES> ORG> OCC> CAR>EXC> SOL and Cd: OCC> CAR> RES> ORG> EXC> SOL. The comparison of different forms of the metals showed the following orders: soluble Ni>Pb>Cd, exchangeable, carbonate and occluded Pb>Ni> Cd, organic and residual Ni> Pb>cd. Increasing the available (DTPA-extractable) concentration of the elements in such a calcareous soil showed that consecutive application of sewage sludge may increase the available (DTPA-extractable) concentration beyond critical levels. A significant corretation was observed between organic form and available (DTPA-extractable) concentration of the elements.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb