Search published articles


Showing 3 results for F. Tajik

F. Tajik, H. Rahimi, E. Pazira,
Volume 6, Issue 3 (fall 2002)
Abstract

The general characteristics of salt-affected soils and soil structure degradation process are partially known, but the effects of saline and sodic conditions on mechanical properties of soils are not well recognized. In this study, the effects of electrical conductivity (EC) and sodium adsorption ratio (SAR) on tensile strength of soils with different organic carbon contents were assessed under laboratory conditions. The soil samples were collected from Dasht-E-Naz, at Sari region in the North of Iran. The samples had the same clay mineral (Illitic) and the main difference between them was the organic carbon content, subjected to different cropping systems. The tensile strength was determined on soil samples which had been treated by solutions having defined EC (0.5 and 4 dS/m) and SAR (0, 5, 15). The tensile strength was positively related to organic carbon content, but negatively to SAR. With increasing SAR, tensile strength decreased, and at a given SAR, the treatments with higher EC showed higher tensile strength. The analysis of variance showed significant differences (at 0.01) between soil samples (four levels), soil sampling depth (two levels), EC (two levels), and SAR (three levels) for all variables under investigation. For soil factor, the order of averages were: Virgin soil > Permanent pasture (Festuca) > Intensive cropping > Permanent pasture (Agropyron).
F. Tajik,
Volume 8, Issue 1 (spring 2004)
Abstract

Aggregation is an important temporal property of soil structure that is affected by intrinsic soil properties and also soil use and management. Aggregate stability has a strong influence on many processes in soil such as infiltration, aeration, strength, erosion, and soil’s ability to transmit liquids, solutes, gases, and heat. In this study, undisturbed soil specimens from 0-10 and 10-20 cm depths were sampled during summer 1999 from some regions in Iran including Golestan, Kermanshah, West Azerbaijan, and Mazendaran. After drying the samples in lab, the different sizes of aggregates were separated and the wet aggregate stability (WAS) and dispersible clay (DC) were determined on 2-2.8 mm aggregates according to Pojasok & Kay procedure (1990). The variance analysis of data showed significant differences among soils in all regions. The averages were compared by Duncan test to find the following order: Mazendaran > Golestan > Kermanshah > West Azerbaijan. Regression analysis of data of whole regions showed that the variability of aggregate stability was mainly explained by organic carbon content (R2=0.723 in P > 0.0001). The clay content had the greatest effect on aggregate stability in samples from Golestan while sand content had the greatest effect in samples from West Azerbaijan. The resulting equations from stepwise regression can be used to estimate aggregate stability from other soil variables in the study regions.
F. Abbasi, F. Tajik,
Volume 11, Issue 1 (spring 2007)
Abstract

Estimation of unsaturated soil hydraulic and solute transport properties by Inverse modeling has thus far been limited mostly to analyses of one-dimensional experiments in the laboratory, often assuming steady-state conditions. This is partly because of the high cost and difficulties in accurately measuring and collecting adequate field-scale data sets, and partly because of difficulties in describing spatial and temporal variability in the soil hydraulic properties. In this study we estimated soil hydraulic and solute transport parameters from several two-dimensional furrow irrigation experiments under transient conditions. Three blocked-end furrow irrigation experiments were carried out, each of the same duration but with different amounts of infiltrating water and solutes resulting from water depths of 6, 10, and 14 cm in the furrows. Two more experiments were carried out with the same amounts of applied water and solute, and hence for different durations, on furrows with water depths of 6 and 10 cm. The saturated hydraulic conductivity (Ks) and solute transport parameters in the physical equilibrium convection-dispersion (CDE) and physical nonequilibrium mobile/ immobile (MIM) transport models were inversely estimated using the Levenberg-Marquardt optimization algorithm in combination with the HYDRUS-2D numerical code. Estimated Ks-values ranged from 0.0389 to 0.0996 cm min-1, with a coefficient of variation of 48%. Estimated immobile water contents (θim) were more or less constant at a relatively low average value of 0.025 cm3 cm-3, whereas the first-order exchange coefficient (ω) varied between 0.10 and 19.52 min-1. The longitudinal dispersivity (DL) ranged from 2.6 to 32.8 cm, and the transverse dispersivity (DT) from 0.03 to 2.20 cm. DL showed some dependency on water level and irrigation/solute application time in the furrows, but no obvious effect was found on Ks and other transport parameters. Agreement between measured and predicted infiltration rates was satisfactory, whereas soil water contents were somewhat overestimated and solute concentrations underestimated. Differences between predicted solute distributions obtained with the CDE and MIM transport models were relatively small. This finding and the value of optimized parameters indicate that observed data were sufficiently well described using the simpler CDE model, and that immobile water did not play a major role in the transport process.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb