Search published articles


Showing 2 results for Farshadirad

A. Farshadirad, E. Dordipour, F. Khormali1 ,
Volume 16, Issue 59 (spring 2012)
Abstract

Non-exchangeable potassium (NEK) release is necessary to supply potassium for plant in different soils. A few studies on the NEK release have been done in soils and particularly on its components. This study was intended to investigate the NEK release from soil and the components of clay and silt through successive extractions with oxalic acid (0.01 M) over a period of 1844 (h) in 4 soil series of Golestan province. The amount of NEK release from whole soil, silt and clay fractions after 1844 (h) were 242 to 450, 380 to 550 and 105 to 199 mg kg-1, respectively. The cumulative rates of NEK release after 1844 (h) were well described by simplified Ellovich, parabolic diffusion and power function equations. The rate of K release was high initially, and then decreased gradually in all soils and in their silt and clay fractions. The amount of released NEK (with high rate) consisted of lower percentage of total NEK, but in spite of less amount, this K form plays a vital role in K dynamic and soil fertility.
A. Farshadirad, E. Dordipour,
Volume 19, Issue 72 (summer 2015)
Abstract

Determination of relationships between different forms of potassium in soils and their constituents can help us to resolve some nutritional problems such as potassium fixation and release and its fertilization management in soil. This investigation was carried out to determine the contribution of soil and their constituents (clay and silt) Kex and Knex to available potassium for plants in 12 loess-like and loess-derived soil series of Golestan province in a pot experiment of corn. Total K uptake of corn in the greenhouse experiment was used as an index of soil-available K. Results showed that the contribution of Kex to plant K uptake was more than that of Knex in clay fraction of all soils. Whereas the contribution of Knex to plant K uptake was more than that of Kex in silt fraction of all soils excluding Oghchi soil series with the highest initial Kex. Therefore, the silt fraction is an important K source for supplying the plant need for K in loess-like and loess-derived soils.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb