Showing 2 results for G. H. Haghnia
M. Forouzangohar, G. H. Haghnia, A. Koocheki, F. Tabatabaie-Yazdi,
Volume 9, Issue 1 (spring 2005)
Abstract
Of all types of xenobiotics, pesticides such as herbicides play a significant role in soil and water pollution due to their widely usage all over the world. This study addresses the ability of organic amendments to enhance atrazine and metamitron degradation in two herbicide contaminated soils with contrasting textures under laboratory conditions. Soil samples were collected from surface soils with textures of sandy loam and silty clay, from northeastern part of Iran. Initial concentration of herbicides was 50 mgkg-1 soil. Contaminated soil samples were treated by manure, compost and vermicompost at the rates of %0.5 and %2 (w/w). Residual concentrations of atrazine and metamitron were determined by HPLC at the end of incubation periods of 20,40 and 60 d. Residual concentrations of atrazine were 93, 77.8 and 72.4 % of the initial concentration after 20, 40 and 60d incubation, respectively. Residual metamitron concentrations were clearly lower than atrazine. After 20,40 and 60 d., the remaining concentrations of metamitron were 5.8, 2 and 1.2 %, respectively. Organic amendments at the rates of .5 and 2 % showed similar effects on the enhancement of herbicides degradation in soils. However, no significant effect was observed between types of organic amendments. Degradation was clearly affected by soil textures. Residual concentrations of herbicides were higher in sandy loam than in silty clay soil.
A. Halajnia, G. H. Haghnia, A. Fotovat, R. Khorasani,
Volume 10, Issue 4 (winter 2007)
Abstract
Study of phosphorus reactions over time and the role of organic matter in the calcareous soils are important for the development of P fertilizer and manure management practices. The objective of this study was to determine the effect of applied manure on P availability and its chemical forms in the soil, over time. Eight samples were collected from semi-arid calcareous soils of Mashhad plain. The samples were treated with two levels of inorganic P (0 and 300 mg P kg-1 soil as KH2PO4) and two levels of organic matter (0 and 1% cattle manure). The experiment was conducted in a completely randomized design with factorial arrangement. The treated soil samples were incubated for 2, 5, 10, 30, 60, 90 and 150 days, then analyzed for available P (Olsen-P). The result showed that only 17% of added phosphorus was available in P treatment at the end of experiment. In manure treated soils, this figure reached 34% for the same period of time. Application of manure along with P increased the recovery of applied P and CBD-P (Citrate-Bicarbonate-Dithionite). This may be due to the formation of P-organic complexes with Fe oxides. Application of manure in soil increased NaCl-NaOH-P considerably compared with P and P+OM treatments. It can be concluded that P originating from manure compared with inorganic-P may be more available for plants over the time.