Search published articles


Showing 3 results for Ghafouri

Z Maryanji, A Sabziparvar, F Tafazoli, H Zare Abianeh, H Banzhad, M Ghafouri, M Mousavi,
Volume 12, Issue 46 (1-2009)
Abstract

Under different climatic conditions of Iran, the evaluation of evapotranspiration (ETo) models sensitivity to meteorological parameters, prior to introducing the superior performance model, seems quite necessary. Using a 35-year (1971-2005) climatological observations in Hamedan, this study compares the sensitivity of different commonly used evapotranspiration models to different meteorological parameters within the IPCC recommended variability range of 10 to 20% during the growing season (April-October). The radiation and temperature-based ETo models include: Penman-Monteith -FAO56 [PMF56], Jensen-Haise [JH1,2], Humid Turc [TH], Arid (semi) arid Turc [TA], Makkink [MK], Hansen [HN], and Hargreaves-Samani [HS]. Results indicate that all the above-mentioned ETo models show the highest sensitivity to radiation and temperature parameters. This implies that special care is required when we apply model-generated radiation and albedo parameters in such ETo models. It is predicted that by 2050, as a result of global warming, the cold semi-arid climates of Iran will cause an average evapotranspiration rise of about 8.5% in crop reference during the growing season.
M. Hosseini, M. Ghafouri, Z. Tabatabaei, M. R. Mokarian,
Volume 20, Issue 78 (Winter 2017)
Abstract

In the last decades, climate change and fluctuation of water balance have been the main reason to apply hydrologic models for estimating quality and quantity of water components as efficient tools in water planning of critical conditions. In addition, these hydrologic models with potential to study the effects of watershed management practices on the runoff components are suitable tools for optimization of watershed operations at present and future. In this research Soil and Water Assessment Tools (SWAT) model has been applied to estimate groundwater runoff  for 6 provinces such as Eilam (Golgol Catchment), Boushehr (Baghan Catchment), Khozestan (Morghab Catchment), Fars (Shekastian Catchment), Kohkiloyeh & Boyer Ahmad(Tange Birim Catchment) and Hormozgan (Daragah Catchment) which are located in south and south west of Iran. In order to evaluate the performance of the model, hydrological data, soil, land use and Digital Elevation Model (DEM) entered for each catchment to run the SWAT model. SWAT-CUP with SUFI2 program was used for simulation, uncertainty and validation with 95ppu. P-factor and R-factor are two internal evaluation factors in SUFI2 program and indicators such as the coefficient of determination (R2) and Nash- Sutcliffe (NS) were used for evaluation of the model. The Nash-Sutcliffe coefficients in six mentioned catchments for calibration period are 0.66, 0.73, 0.40, 0.32, 0.53 and 0.78. They are 0.49, 0.48, 0.42, 0.45, 0.46 and 0.62 for validation period, respectively. Model calibration and validation results showed good performance in estimating the water balance of the basins studied. Except for Shecastian catchment, the evaluation results showed acceptable and favorable results for water balance in the study area.


A. Kheyrandish, S. F. Mousavi, H. R. Ghafouri, S. Farzin,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

In this research, conjunctive and integrated operation of surface and ground water resources of Behbahan plain (Maroon dam's reservoir and existing wells, respectively) was investigated. Simulation of allocation of water demands in this basin was performed by four scenarios, using WEAP software: 1) current conditions (M1), 2) reference scenario for the next 16 years (M2), 3) land development scenario (M3), and 4) optimal scenario (M4). The optimal scenario was performed with multi-purpose linear programming. Based on the results, drinking water demands was satisfied completely in all scenarios. Under the scenario of current conditions, all agricultural demands, except the traditional rights, supplied more than 50% in the low-flow months. In the reference scenario, water supply for agricultural demands in some months was less than 100% and even in June and July, the water supply for North and South Irrigation networks of Behbehan plain was less than 10%. In the land development scenario, agricultural demands of all irrigation networks, except Ramhormoz network, satisfied more than 90% in all months. The optimal scenario performed better than other scenarios for minimum Maroon River flow and volume of storage in the reservoir. Comparison of the four scenarios in satisfying the environmental needs also revealed that the optimal scenario performed better than the other three scenarios in the spring months. However, it provided less than 100% of water needs in the whole year. Comparison of the four scenarios also showed that the first two scenarios had the highest reliability percent in the Jayzan-Fajr, South Behbahan and North Behbahan Irrigation Networks and traditional water rights. Frequency of storage-time-probability from the storage volume in the optimal scenario also showed that maximum storage lifetime of the lasting storage volume was 558 million m3 (which was equal to half of the volume of Maroon dam’s reservoir) with the highest probability (60%).


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb