Search published articles


Showing 8 results for Ghahraman

B. Ghahraman, H. Abkhezr,
Volume 8, Issue 2 (summer 2004)
Abstract

Rainfall intensity with different frequencies is needed for many hydrologic models. Rainfall intensity–duration–frequency relationships (IDF) have been investigated for different regions using previously recorded data. Iran Meteorological Organization has prepared IDF curves for 66 stations in Iran since which are the most updated data. Comprehensive IDF relationships were developed for these data. The results showed remarkable changes when compared with previous studies of Iran. This may be due to a change in parameters of probability distribution function as a result of increased record length of stations. Some relationships were also developed for ten year-hourly ( P6010) rainfall estimation from some parameters such as average annual rainfall and average maximum daily rainfall. Such a relationship was made for all stations and also for different classifications of regions (based on average annual rainfall and apparent climatically divisions). The validity of all relations was analyzed for eight independent stations with suitable spatial distribution. It was shown that all relationships are nearly valid as far as a suitable region is choosen. The previous relationship for Iran is not useful at present.
H. Shirgholami, B. Ghahraman,
Volume 9, Issue 1 (spring 2005)
Abstract

A number of researches have indicated a gradual increase in mean temperature throughout the world. Yet, there are some reports on the reduction of annual mean temperature. In this research we investigated a long-term trend of annual mean temperature in 34 synoptic stations in Iran (2 stations in cold and humid climates 14 in humid and moderate climates, 11 in Steppe climate and 7 in desert climate - following Kopen climatic division) with a minimum statistical record of 30 years by applying the minimum square-error and Man-Kendall methods (Wald-Wolfowitz method had a different result). The results confirmed a positive trend in 59% stations, while 41 % of the stations were negative for the whole time-horizon of data. Considering the significance level, 3 zones of positive, negative, and no trends for annual mean temperature were detected in Iran. However, it was hard to define a specific spatial theme for such a division. By taking another approach, we proceeded with a shared statistical time period of 1968-1998 for all stations. In this case, 68% of the stations showed a positive trend, while the remaining 32% was negative. There were some shifts in direction from one trend to another in some of the stations in the study, yet no well-defined spatial structure was reported. In contrast, at 5% level of significance, 44, 15 and 41 percentages of the stations demonstrated positive, negative, and no trend for annual mean temperature, respectively. In general the behavior was different for different climates and no specific pattern was found. So, despite the fact that some stations did not show significant trends, one may hypothesize that more regions in future will experience higher temperature values and their positive trends would be a clue for future warming.
M. M. Nakhjavani Moghaddam, B. Ghahraman,
Volume 9, Issue 3 (fall 2005)
Abstract

In order to determine the water production functions for winter wheat (Variety, C73,5), an experiment was conducted in through of a complete randomized block design with 9 treatments and 3 replications in Mashhad region. While the first treatment (as a control treatment) was selected on the basis of irrigation in all growth stages of growing season, six treatments were selected on the basis of an irrigation cut in the six stages of growth season and two remaining treatments were also selected on the basis of a constant reduction of irrigation to the amount of 20 and 60 percent. In general the water stress was caused that the amounts of depth percolation were calculated negatively which was an indication of the water uptake from below the root zone. According to results, models of the yield in per unit of area had a higher correlation coefficient of determination in relation to the models of the yield in per unit of water. The derived sensitivity coefficients indicated that the winter grain formation and flowering stages were respectively the most sensitive stages of the growth season stages to the water deficit. There are some differences between these computed sensitivity coefficients and the amounts reported by the other researchers. Probably the variety, degree of stress, the climatic conditions and some unknown factors may explain these differences.
S. Rastgoo, B. Ghahraman, H. Sanei Nejad, K. Davary, S. R. Khodashenas,
Volume 10, Issue 1 (spring 2006)
Abstract

This research is aimed to predict erosion and sedimentation of Tang-e-Kenesht basin in Kermanshah province using MPSIAC and EPM models in GIS software. This basin has about 14348 hectare area. This region has various vegetation, geology and soil texture and land use types. The basin has divided into 9 sub-basins and its maximum and minimum elevations are 3300 and 1400 m, respectively. Needed data were collected in part through published reports, while the remainings were derived by field survey. Necessary maps in MPSIAC and EPM models were prepared in Autocad-2000 medium and were transported to Arc-Info, after some revisions to them. After constructing topologies for all polygons, we entered all layers weights in Arc-View software. Combinations of all layers were managed thereafter. Nine layers for MPSIAC model and three layers for EPM model were combined to result the final layer of erosion and sedimentation. Basin erosion was calculated as 1002.7 and 1739.2 m3/Km2 by MPSIAC and EPM models, respectively. The result for basin sediment was 521.7 and 307.8 m3/Km2, respectively. Thereafter, medium and high erosion classes were found for the two models under study, respectively. Due to not fully compatible tables for EPM model and its subjective nature, one can conclude that MPSIAC model may have better performance.
A. Haghverdi, B. Ghahraman, M. Kafi, K. Davari ,
Volume 15, Issue 58 (winter 2012)
Abstract

The objective of current study was to perform screening experiment, (phase zero of response surface methodology) the analysis of salinity and water tensions for spring wheat in Mashhad region and derive water production functions. The experiment was performed in the Research Field of Agricultural Faculty of Ferdowsi University of Mashhad in 2009-2010. Two water sources were selected: saline water (10 dS/m) and water without salinity limitation (0.5 dS/m). A single replicate factorial experiment with four variables and water requirements in different growth stages, was done with each variable having two levels, 20% and 100% of water requirements. The central points of experiment area with two replications were added for estimating the curvature in the fitted response surface. The results showed the water requirements in heading and flowering were the most important variables. The fitted water production functions estimated the yield of saline and non saline plots with correlation coefficients equalsing 0.95 and 0.99. In general, the obtained results proved the efficiency of the screening experiment in identifying the relative importance of variables and excluding the ineffective variables
M. Shafiei, H. Ansari, K. Davari, B.ghahraman,
Volume 17, Issue 64 (summer 2013)
Abstract

Application of conceptual hydrological models is an important issue in watersheds for researchers, especially in arid and semi-arid regions. The hydrological behaviors are complicated in such watersheds and their calibration is more difficult. In this article, the conceptual and semi-distributed SWAT model is used for a semi-arid Nishabour watershed with 9350 km2 area. Streamflow simulation is considered for 8 years. Nishabour watershed modeling led to 22 subbasins and 146 Hydrologic response units. SUfI2 approach is used for calibration and uncertainty analysis of watershed modeling. Results showed that calibration and validation of watershed model is not satisfactory, because of uncertainties in conceptual model such as dam structures, and land subsidence. Another reason is related to the complexity of hydrological system in arid regions which has simplified in hydrological models. Moreover, the complex behavior between runoff and subsurface flow in low depth of rainfall events usually effects in hydrological simulation results. Finally, it concluded that we cannot rely on conceptual hydrologic models with different sources of uncertainty without including them in hydrological modeling at arid and semi-arid watersheds.
E. Tavakoli, B. Ghahraman, K. Davari, H. Ansari,
Volume 17, Issue 65 (fall 2013)
Abstract

Quantitative evaluation of evapotranspiration on a regional scale is necessary for water resources management, crop production and environmental assessments in irrigated lands. In this study, in order to estimate ETo and because of few synoptic stations and also little recorded meteorological data in North Khorasan Province, Iran, with arid and semi-arid climate, 7 stations from neighboring provinces were used. Reference evapotranspiration was calculated using 6 different methods which required a small amount of input data, including Class A pan, Hargreaves-Samani, Priestly-Tailor, Turc, Makkink and the method proposed by Allen et al (1998) to estimate ETo with missing climate data. Besides, the standard FAO-Penman-Monteith was used (because there was no Lysimetric data in the region) to evaluate the applied formulas. Since there was no agreement over the appropriate method to calculate ETo in the selected stations, by using significance test of regression lines, a linear regression equation was computed for each month, in order to convert the best calculating method to FAO-Penman-Monteith formula. Evaluations of these equations showed their acceptable accuracy, in comparison with the previous researches, specifically for cold months (MAE values ranged from 0.3 to 1.4 mm/day).
Seyyed S. M. A. Maddahzadeh., K, Esmaili, B. Ghahraman,
Volume 21, Issue 1 (Spring 2017)
Abstract

Bi-level drainage system is a type of underground drainage systems, in which adjacent drainage lines are installed at different depths. In the Hydraulics Laboratory, Ferdowsi University of Mashhad, a model was built, that include a cube tank 2 meters in length, width and height of 1 meters was made ​​of galvanized. In this model, two rows 20 cm apart from each other drains were installed. As drainage, a pipe of three layers to the outer diameter of 16 mm was made of PVC. Within this model of stratified soil was used as a soil layer of low permeability with a hydraulic conductivity of 1.15 cm per hour, thickness of 20 cm soil layer between two light soil layer with 30-cm thickness for bottom layer and 20 cm for the top layer with a hydraulic conductivity of 1.55 cm per hour. For accurate measurement of the water table Behavior in the soil at each point of the model, some piezometer distance of 10 cm from each other on the floor model was installed. After Outfit of model with blow-off valve, Experiments with a heavy irrigation for different intervals between depths of 30 and 50 cm were used in drainage and water table elevation values ​​as observed values ​​were extracted from the model. The results show that the values ​​obtained from Upadhyaya and Chauhan Equation only in small area of water table profiles, which include an area of between the two drainage, are consistent with observed and with a wider distance between deep and shallow drainage, time of drop in water table increased.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb