Search published articles


Showing 18 results for Ghobadi

N. Sakenian Dehkordi, B. Ghobadian, S. Minaei,
Volume 5, Issue 2 (summer 2001)
Abstract

A suitable instrument capable of inserting mulch into soil is needed to improve soil water holding capacity. The goal of this research is to design and manufacture an instrument with a blade and mechanism that can insert rice mulch into the soil. All the parameters in sub-soiling operation were taken into account, and the technique presented can be recommended as a special method of injecting rice husk. The instrument designed was easy to use on a tractor. Sub-soiling operation and husk injection were carried out satisfactorily using various amounts of husk and at different soil depths. This method was added to the conservation chart presented by Morgan as an integrated technique.
Gh. Chegini, B. Ghobadian, M. Barekatin,
Volume 7, Issue 4 (winter 2004)
Abstract

The difficulties in the storage of fruit juice and the use of juice powder in various food processing industries has made the juice powder attractive to consumers and producers. Making powder from fruit juice is one of the most complex methods of fruit processing.The hygroscopic nature of fruit juice component and its thermoplastic properties has caused the drying time control and the transportation of the product from the drying zone to the next stage to become very difficult. In this investigation with laboratory spray dryer, the effective parameters on orange juice powder deposit on the wall of the spray dryer was studied. The results indicate that the powder can not be made without the use of additives. Using liquid glucose as an additive to orange juice concentration increased the dryer performance and reduced the wall deposit considerably. With the help of liquid glucose additive, spray dryer optimum conditions were obtained with a feed flow rate of 15 ml/min, inlet air temperature of 130oC and outlet air temperature of 85oC. The results from the statistical analysis of the experimental data show that the parameters of inlet air temperature and feed flow rate have significant effects on the dryer yield and wall deposit both individually and jointly. By increasing inlet air temperature and feed flow rate, the dryer yield decreased but wall deposit increased. In spite of using suitable additives, the wall deposit was still in the range of 14 to 65 %. The results of experiments indicate that the main cause of wall deposit can be attributed to the wall high temperature. It is, therefore, necessary to keep the wall temperature below the orange powder sticky point temperature to prevent rising temperature in wall deposit. For the orange powder containing 2% moisture, the sticky point temperature is 44oC. To control the wall temperature, a dryer with double partition wall chamber and a cooling system is proposed.
M. Mohamadi Bazargani, B. E. S. Tabatabaei, A. Rezaei, C. Ghobadi,
Volume 8, Issue 2 (summer 2004)
Abstract

Optimizing regeneration of cotton plant in two variety (Sahel and Varamin) via shoot apex was done in order to Agrobacterium-mediated transformation. In this reaserch shoot apexes of two varieties were isolated from four or five day seedling and were placed on a special medium of shooting (modified MS without hormon).In order to select the best rooting media, The Statistical Analysis explants that produce shoot and leaves in a CRBD with 4 replicates and 4 rooting treatments: 1) modified MS without hormon, 2) ½ MS with 0.1 mg/lit IBA, 3) ½ MS with 0.1 mg/lit NAA, 4) ½ MS with 0.1 mg/lit IAA. The statistical analysis indicated that the best for both varieties, was medium with 0.1 mg/lit IBA and rooting percentage of Varamin is better than sahel in all of media.
T. Mahmoodi-Ghehsareh, B. E. Sayed-Tabatabaei, C. Ghobadi, A. Mirlohi,
Volume 8, Issue 3 (fall 2004)
Abstract

The significance of haploid plants as genetic and plant breeding tools has been recognized for a long time. Haploid production techniques including anther culture, isolated microspore culture and intergeneric hybridization between wheat × Hordeum bulbosum and wheat × maize have been used to produce homozygous lines which accelerate breeding programs. In this study, wheat × maize hybridization and anther culture techniques were used for haploid production in six wheat genotypes. The results showed that 70.7% of regenerated plants through anther culture were albino plants and only 29.2 % were green, while the plants produced through wheat × maize method were all green. Ploidy variation was not observed in plants regenerated through wheat × maize hybridization. It was concluded that wheat × maize crosses would be an appropriate and practical method for haploid production in different wheat genotypes, which in comparison with the anther culture method has a higher efficiency.
A. Yamchi, F. Rastgar Jazii, C. Ghobadi, A. Mousavi, A. A. Karkhanehee,
Volume 8, Issue 4 (winter 2005)
Abstract

Proline as a key osmoregulating solute in plants plays an overriding role in osmotic pressure adjustment of the cell under water stress conditions. In plant, a bifunctional enzyme delta-1-pyrroline-5-carboxylate synthetase (p5cs) promotes and directs proline synthesis during drought stress conditions. The activity of this enzyme is strongly induced to increase proline concentration within the cell to prevent the impact of water deficit. In this study, the sequence coded for p5cs enzyme under the control of the cauliflower mosaic virus 35S promoter was cloned into a plasmid containing gus and nptII genes. The construct pBI121-p5cs was then transferred into Agrobacterium tumefaciens C58 (pGV3101) and used for producing transgenic tobacco(Nicotiana tabacum cv. Xanthi) plants. The amplification of a 765 bp band within p5cs gene from transferred plants and forming deep blue color in leaf tissues of the explants indicated the successful introduction of p5cs construct into nuclear genome of tobacco plants through Agrobacterium-mediated transformation. The two-month old plants growing under normal condition besides the five-day seedlings under drought stress were subjected to determination of proline concentration. Comparison of P5cs product levels between control and water tolerated plants indicated an increase of proline of about 96.91 to 1330.891 mg/g and of 204.454 to 2039.77 mg/g in plants under normal irrigation and under drought stress, conditions respectively. The significant difference between the levels of proline product in control and transgenic plants under different growing conditions demonstrated the expression of targeted gene (p5cs) in engineered tobacco plants that may pave the way to overcome the water stress problem in agronomically useful crops.
D. Momeni Abkharaki, B. Ghobadian, A. Hemmat, S. Minaei,
Volume 8, Issue 4 (winter 2005)
Abstract

Differential lock is a means of improving tractor performance. This system causes the revolution of the axles to become equal. It, improves traction, decreases abrasion of drive tires, improves fuel consumption, and increases tractor work rate. Despite advantages of the system, differential lock has not been optimized in Iran. Thus, a semi-automatic differential lock system for MF-285 tractor was designed and developed. First of all, the different parts of the system were designed, selected, assembled. Under critical conditions, the designed system should disengage the differential lock. Critical conditions for engaging this system are: using of independent brake pedals, high forward speed, and turning the steering wheel. For sensing and measuring the critical conditions, proper sensors were selected. Output signals of these sensors were sent to a micro controller to decide the continuous engaging or disengaging. Finally, a MF-285 tractor was equipped with the designed system. The tractor performance in primary tillage was evaluated using a mounted moldboard plow with a width of 110 cm and a working depth of 25 cm. These tests showed that unbalanced weight distribution on wheels and unequal traction capacity under drive wheels cause the slip of one wheel to be 6 percent higher thananother. This system improves the unequal slip problem and decreases fuel consumption by 0.5 L/ha.
S. R. Hasan Beygi Bidgoli, B. Ghobadian, P. Nassiri, N. Kamalian,
Volume 8, Issue 4 (winter 2005)
Abstract

In addition to farm operations, power tillers in Iran are also engaged in load and passenger transportation. Inspite of their noise and adverse effects on power tiller drivers and bystanders, they have not been adequatly investigated. The initial survey in the present investigation on a 13-hp power tiller at 2200 rpm engine speed revealed that its noise was 92 dB(A), compared to the standard limit of 85 dB(A) which is disappointing. The test site was prepared according to international standards and the noise signals emitted from the system were measured and analyzed in time and frequency domains for audio frequency range (20 – 20000 Hz). The results showed that the noise intensity was higher by 7.74 to 10.75 dB(A) for the microphone position at driver’s ear compared to the bystanders position and that the engine speed played a great role in noise generation for power tiller. This is because the noise increases up to 8.5 dB(A) with engine speed variations. Finally, the power tiller prediction models of sound pressure levels at driver’s ear and bystanders were determined using the experimental data.
M. Bahar, S. Ghobadi, V. Erfani Moghaddam, A. Yamchi, M. Talebi Bedaf, M. M. Kaboli, A. A. Mokhtarzadeh,
Volume 10, Issue 2 (summer 2006)
Abstract

To determine genetic diversity among some Iranian local varieties of alfalfa, six geographically diverse populations including: Bami, Rahnani, Nikshahri, Yazdi, Hamadani (from Isfahan), Hamadani (from Shiraz) along with Ranger, an American commercial variety, were evaluated using a set of 24 EST-SSR primers developed from cDNA library of Medicago truncatula and three microsatellite loci, identified from genomic library of M. sativa. Of the pairs of primers tested, four loci from EST-SSRs (AW9, BEE, TC6 and TC7) and genomic microsatellite (Afctt32), were found appropriate for assessing genetic diversity between these alfalfa genotypes. In total, 46 alleles were detected from the five loci in the samples of alfalfa examined. The number of alleles per locus in populations ranged from six to eleven and genetic diversity indices of loci were variable from 0.62 to 0.87 for the populations. Genetic relationship analysis of EST-SSR data revealed separation of Iranian populations from Ranger. It is likely that the parental origin of primary population from which Ranger has been derived is different from that of Iranian populations. Iranian local populations of alfalfa in this study were grouped in two main clusters. Alfalfa populations Hamadani and Rahnani, which are adapted to cold claimates, were grouped in one cluster and populations Bami, Yazdi and Nikshahri, belonging to the trpoical areas, were placed in the next cluster. The positioning of EST-SSR loci in coding regions of genome, possibly increases the usefulness of these markers to clarify inter specific genetic relationships among alfalfa populations.
M. Bahar, M. R. Mohammadi, C. Ghobadi,
Volume 10, Issue 4 (winter 2007)
Abstract

The identification of potato cultivars is a recurrent objective of potato research. The research is prompted by the increasing number of potato cultivars and the importance of seed purity. In developing a reliable method for identification of the imported potato cultivars and determining their genetic relationship, the capacity of 10 polymorphic simple sequence repeat markers (SSRs) was evaluated for the analysis of 28 commercial cultivars of potato. The number of alleles detected at different loci ranged from 3 to 10 alleles with a total of 57 for all loci and a mean of 5.7 alleles per locus. In the 28 potato cultivars analyzed, the number of heterozygous genotypes per locus varied between 6 to 28 with an average number of heterozygous genotypes per locus of 18, considering the 10 loci studied. Based on the resulting dendrogram of jacquard's similarity coefficient and UPGMA analysis, the potato cultivars were placed in two major groups. However, the results from similarity coefficient confirmed the close phylogenetic relationships among members in each cluster. The dendrogram derived from SSRs data clustered together Kenebek, Florida and Atlantic which are known as American potato cultivars, but Stanbuli, an old cultivar in Iran, was placed in concert with European cultivars. This finding might be an indication that this cultivar along with other unidentified cultivars, growing in local fields, has been introduced from European countries to Iran. The results obtained illustrate the appropriate utility of SSRs to assess genetic relationships of potato cultivars and develop a PCR- based tool for evaluation of potato seed purity.
C. Ghobadi, M. Khosh-Khui, B.e. Sayed-Tabatabaei,
Volume 12, Issue 45 (fall 2008)
Abstract

Grapevine (Vitis vinifera L.) is a clonally propagated major fruit crop. In grapevine, identification of genotypes with amplographical features is often based on mature plant characteristics that may be affected by environmental conditions. This approach lacks objectivity and reliability. Recently, molecular markers have proved to be supplementary techniques to analyze genetic diversity and examine genetic relationships existing between cultivars in a range of horticultural crops. In this study, twenty genotypes from grapevine (V.vinifera species) grown in Isfahan province were characterized by RAPD technique to understand the extent of diversity and relatedness. Fifty random primers were used for the RAPD study. Of those, twenty four informative primers which generated reproducible polymorphic bands were used for grouping the genotypes. PCR products of the genotypes’genome revealed a total of 315 bands, out of which 282 were found to be polymorphic. Average number of 13 bands was obtained per primer and the amplification produced ranged in size from 300 bp to 3000 bp. The dendrogram constructed using UPGMA cluster analysis differentiated the genotypes into two major clusters, nineteen in one group and Madar-o-Bache genotype has been placed in a separate one, indicating its high genetic diversity compared to the rest of the genotypes. Intra-clustering within cluster A grouped the genotypes in four sub-clusters as expected from their genetic background. The results of the study revealed that the RAPD technique is a relevant technique to determine genetic diversity, genomic analysis and to examine genetic relationship in grapevines.
R. Ghobadian, M. Zare, S. M. Kashefipour,
Volume 16, Issue 60 (Summer 2012)
Abstract

Development of precise and simple methods in flood simulation has greatly reduced financial damage and life loss. Various methods and procedures have been implemented based on Saint-Venant's one-dimensional equation governing unsteady flows. To simplify the solution for these flows, analytical and numerical methods have been used. In the present study, a new method that provides the optimal outcome is introduced using non-linear programming. Penalty function has also been used to convert nonlinear programming (NLP) constrained problems into unconstrained optimal issues. To verify the accuracy of decision variables, the study covered 60 cross-sections of Gharasu River and 25-year flood hydrographs. After determining the model correctness, the 50 and 100-year flood hydrograph were routed in 18 Kilometers. The results were statistically compared with hydraulic and Muskingum hydrological methods. To sum up the routed hydrographs introduced by NLP method were very close to the hydrographs produced by dynamic wave method. The R2 of calculated discharge of routed hydrograph by NLP and dynamic wave method were 0.948, 0.990, and 0.989, respectively, with the return period of 25, 50 and 100-year flood being 0.989. It can be concluded that NLP method is more accurate than Muskingum method, especially when predicting the peak discharge of flood hydrograph.
R. Ghobadian, , E. Merati, A. Taheri Tizro,
Volume 17, Issue 63 (Spring 2013)
Abstract

Stage – discharge relationship is mainly developed from measured data in any hydrometry station. Measured data usually obtain in low to medium flow discharge, because in most cases it is very difficult to measure the flow discharge during flood. Therefore, the stage–discharge is extrapolated beyond the measured data to compute the flood which may estimate low or higher value. This is because during the high flow, the bed form is developed which causes the flow resistance to change. In order to establish a better stage – discharge relation, it is important to apply methods which consider the bed form resistance. In this study an attempt has been made to determine the best method for developing such relationship. To reach the goal, the required data such as river cross section, discharge and related stage and bed material gradation from Ghorbaghestan hydrometry station were measured for two years. Then a computer program was developed. Using this program and applying the measured data, the stage – discharge relationships were computed by five different methods. From the statistical comparison of the results of these methods with measured data, it was found that Shen, Brownlie, Engelund and White’s method overestimate the flow discharge. The best method was found to be the Einstein – Barbarossa’s method that provided the minimum absolute mean errors 0.31 and 1.468 m3/s and minimum root mean square error 0.112 and 0.466 m3/s for the two study years, respectively
H. Ghamar Nia, M. Jafari Zadeh, E. Miri, M.e Ghobadi,
Volume 17, Issue 66 (winter 2014)
Abstract

The estimation of crop water requirement is one the most important stages for designing different irrigation systems, programming and corrected management of water resources. Therefore, to determine the water requirement for Coriandrum sativum L. a study was conducted in College of Agriculture Research Farm at Razi University in the city of Kermanshah during two years, 2010 and 2011. For this purpose, three water balance drainable lysimeters with the diameter of 1.20m and height of 1.40 m were used. During the investigation, the irrigation was determined by using data logger equipment of (IDRG). The soil humidity was determined in the field capacity condition. The evapotranspiration was calculated using water balance equation. Finally, the Coriandrum sativum L. water requirement was determined to be 722.95 and 580.64mm for years 1388-1389 and 1389-1390, respectively. Meanwhile, the potential evapotranspiration using the Penman Monteith equation was calculated to be 643.58 and 530.17mm for the first and second year of investigation, respectively.
H. Taheri Sodejani, S.h. Tabatabaei, M. Ghobadinia, H. Kazemian,
Volume 18, Issue 67 (Spring 2014)
Abstract

Zeolites are substances that have been renowned for their remarkable nitrogen adsorption capacity resulting of decrease in leaching rate of soil nitrogen. This research was conducted to study the effect of the zeolite dosage, zeolite particle size and the method of application on the nitrate leaching of the soil irrigated by treated wastewater (TWW). All of the adsorption tests were carried out in a 27 PVC columns with 11 cm diameter and 60 cm length. The experiments were consisted of 9 treatments and 3 replications including 2 zeolite application method (mixed and layered), 2 zeolite’s grain size (63-125 and <63 micrometer) and 2 zeolite dosage (2 and 4 percent). Zeolite powders were added to the soil in mixed or layered fashion. The soil columns were irrigated 13 times with TWW in a weekly period. In the 4th, 9th and 13th irrigation event, three samples were taken from input and output TWW introduced to columns to measure the change in nitrate concentration. The results were shown that nitrate absorption rate was increased by average of 164.3% and 350.7% in mixed and layered treatments, respectively compared to the control. The result showed that zeolite application method, irrigation event, zeolite’s grain size and dosage were statistically significant on nitrate absorption efficiency (P<0.01). It shows that as the zeolite size decrease the soil nitrate adsorption increases significantly. It increases when the zeolite percentage increases. The result show that the soil nitrate adsorption decreases as the irrigation event increase and soil adsorption potential degraded with irrigation events.
H. Beigi Harchegani, G. Banitalebi, M. Ghobadinia,
Volume 21, Issue 1 (Spring 2017)
Abstract

Treated wastewater may influence soil structure, porosity and as a consequence, soil saturated hydraulic conductivity. This study aims to assess the effect of wastewater on saturated hydraulic conductivity; and to determine the suitable soil solids fractal dimension to incorporate into the pedotransfer function by Rawls et al (1993) for estimation of saturated hydraulic conductivity (Ks). Soil saturated hydraulic conductivity was measured by disc permeameter. Soil particle fractal dimension was calculated from linearized forms of mass- time, mass- diameter and mass- diameter as modified by Kravchenko- Zhang (1998) relations. Wastewater irrigation for 13 years increased the saturated hydraulic conductivity three times, from 7 mm/hour to 21 mm/hour, but longer application of wastewater did not further increase it. Rawls et al (1993) pedotransfer produced acceptable and relatively close saturated hydraulic conductivity values to that of disc permeameter when fractal dimension obtained from the linearized forms of mass- diameter and Kravchenko- Zhang relations were used. Therefore, Rawls et al (1993) pedotransfer was capable of reflecting the effect of wastewater application on soil saturated hydraulic conductivity.
 


Z. Heidari, M. Farasati, R. Ghobadian,
Volume 22, Issue 2 (Summer 2018)
Abstract

To design cost-effective and efficient drip irrigation systems, it is necessary to know the vertical and horizontal advance of the wetting front under the point source; also, the proper management of drip irrigation systems requires an awareness of the soil water distribution. Many factors influence wetting pattern dimensions, including discharge, land slope, irrigation time and soil texture. The purpose of this study was to investigate the applicability of the support vector machine in simulating the wetting pattern under trickle irrigation. After preparing a physical model made of Plexiglas with specific dimensions and filled with silty clay loam soils, experiments were conducted in the irrigation laboratory of Razi University, Iran, with emitters of 2, 4, 6 and 8 l/hour discharge during the irrigation intervals of 2 hours and 24 hours redistribution and 0,5,15 and 20% slope with three replications. In this study, the statistical indicators R2, RMSE, MBE and MEF were used. R2 values for the wet depth, width and area were 0.96, 0.96 and 0.92, respectively. Regarding the MBE value, the SVM model estimated the wet width and depth parameters to be 3% less than the actual value, and simulated the wet area 2.04% less than the real value. Also, according to the MEF and RMSE values, the SVM model simulated the wet area parameter with more error.  Overall, the results showed that the SVM model had a high ability to estimate the wetting pattern parameters.

S. Ghobadi Alamdari, A. Asghari Moghaddam, A. Shahsavari,
Volume 23, Issue 4 (Special Issue of Flood and Soil Erosion, Winter 2019)
Abstract

Lack of the proper conjunctive use of surface and groundwater resources causes large water stresses in one of these resources. Conjunctive use of surface and groundwater, especially in arid and semi-arid regions, is a scientific and practical solution for sustainable water resources management. The aim of this research was to prepare some mathematical modeling to apply the conjunctive use of surface and groundwater in the Dehloran plain aquifer. In this study, the mathematical model of the Dehloran plain aquifer was developed using GMS 9.1 and the river data were entered. For the steady state condition, the time series data in the average year 2010-2011 were utilized. In the next step, the time series data from October, 2010, to September, 2011, were used for the unsteady state analysis. In the unsteady state, four stress periods were taken; then the model calibration was carried out in three steps for each stress period; after the optimization of the hydrogeological parameters of the model, its verification was done for the period of 2011-2012 period. After the calibration of the model in the unsteady state, the values of the mean error (ME), the mean absolute error (MAE) and the root mean squared (RMS) errors measured in piezometers were obtained to be -0.24, 0.46 and 0.65, respectively. The results of verification confirmed the ability of the model in simulating the natural conditions of the aquifer. Finally, applying different scenarios to the model showed that the proper conjunctive use of surface and groundwater could increase the volume of water at a rate of 2.23 million cubic meters per year.

A. Ghobadi, M. Cheraghi, S. Sobhan Ardakani, B. Lorestani, H. Merrikhpour,
Volume 26, Issue 1 (Spring 2022)
Abstract

The qualitative assessment of groundwater resources as the most important sources of drinking and agricultural water is very important. Therefore, the present study was conducted to evaluate the quality of heavy metals in groundwater resources of the Hamadan-Bahar plain in 2018 using water quality indices. In so doing, a total of 120 groundwater samples were collected from 20 stations during the spring and summer seasons and the values of physico-chemical parameters were determined based on the standard methods and also the content of heavy metals was determined using inductively coupled plasma spectroscopy (ICP). The results showed that the mean concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn (µg /L) in the samples in the spring season were 5.08, 0.260, 1.05, 2.70, 1.50, 0.490, 1.50, 7.48, and 1.75, respectively, and in the summer season were 20.7, 0.220, 0.950, 7.12, 1.34, 0.490, 1.29, 8.23, and 2.08, respectively and except for As in the summer season, the mean content of other elements was lower than maximum permissible limits established by WHO for drinking water. Meanwhile, the mean values of Cd, HPI, HEI, MI, and PoS indices in the spring season with -7.51, 9.91, 1.42, 1.42, and 328, respectively, indicate the water quality was categorized as low, low, low, low and moderately affected and in the summer season with -5.90, 10.0, 3.04, 3.04, and 673, respectively, were categorized as low, low, low, moderately affected, and high pollution. Due to the extensive use of agricultural inputs, especially chemical and organic fertilizers and chemical pesticides containing heavy metals by farmers in the study area, the possibility of increasing the concentration of heavy metals in the soil and their penetration into groundwater aquifers will not be unexpected in the medium term. Therefore, periodic monitoring in groundwater resources of the study area is recommended.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb