Showing 1 results for H. Bashari
R. Roghani, S. Soltani, H. Bashari,
Volume 16, Issue 61 (fall 2012)
Abstract
Southern Oscillation Index (SOI) and Sea Surface Temperature (SST) patterns affect rainfall in many parts of the world. This study aimed to investigate the relationship between monthly and seasonal rainfall of Iran versus SOI and Pacific and Indian sea surface temperature. Monthly rainfall data, from 50 synoptic stations with at least 30 years of records up to the end of 2007, were used. Monthly and seasonal time series of each station were divided to several groups by four methods (Average SOI, SOI Phases, Indian SST Phases and Pacific SST Phases) using Rainman software and with regard to 0-3 months lead-time. Significant differences among rainfall groups in each method were assessed by the non-parametric Kruskal-Wallis and Kolmogorov-Smirnov tests, and the significant relationship was validated using Linear Error in Probability Space (LEPS) test. The results showed that SOI during summer (July-September) was related to autumn (October-December) and October rainfall in the west and northwest of Iran and the west Caspian Sea coast. The El Niño (negative) phase was associated with an increase in rainfall and the La Niña (positive) phase was associated with a decrease in rainfall in these regions. Average SOI is a useful index for rainfall forecasting in the above-mentioned areas. However, Indian and Pacific SST phases are not suggested for rainfall forecasting in Iran, duo to weak or non-persistence relationships. In conclusion, Iran rainfall is not limited to SOI, Pacific and Indian SST therefore, Rainman could not be used as an aid to water resources management over a year in Iran. It is suggested that we study the teleconnection between Iran rainfall and other ocean-atmospheric oscillations developing a model similar to Rainman in order to that we investigating the variation in Iran rainfall with aid of other effective ocean-atmospheric indicators