Search published articles


Showing 2 results for H. Dashti

H. Shirani , E. Rizahbandi, H. Dashti, M.r. Mosaddeghi, M. Afyuni,
Volume 15, Issue 55 (spring 2011)
Abstract

Organic matters are the most important factors that affect soil compactability and physical characteristics. In order to study the effect of pistachio waste on physical characteristics of two soils, a factorial experiment was conducted in a completely randomized design with three replications in a greenhouse. The treatments included pistachio waste at 4 levels (0, 3, 6 and 9 w/w %) and two types of soil texture (silty clay loam and sand).The results showed that the bulk density of sandy soil was decreased at high levels of waste application before compaction but had no significant effect on the bulk density of clay soil. The penetration resistance of both soil types was decreased by pistachio waste application. Soil water holding capacity increased and moisture curves shifted up for higher levels of organic matter application, while compaction curve reciprocally shifted into the lower levels by incorporation of wastes into the soils. At higher levels of organic matters, maximum bulk density was decreased and critical moisture was increased specially in fine texture soil. After compaction, the application of pistachio waste significantly reduced penetration resistance in silty clay loam soil relative to control but in sandy soil its effect on penetration resistance was only significant at maximum level (9 %).
M. Ansari Azabadi , H.shirani, H. Dashti, A. Tajabadipur ,
Volume 15, Issue 57 (fall 2011)
Abstract

Calcareous and gypsiferous soils are restricting factors for uptake of some plant nutrient elements and plant production. Most soils in Iran are calcareous and gypsiferous. Therefore, the aim of this study was the evaluation of calcium carbonate (Caco3) and gypsum effect on availability of some nutrients and corn growth. This study was conducted in a greenhouse at Vli-e-Asr University of Rafsanjan. Treatments were arranged in a factorial manner as a completely randomized design with three replications. Treatments were three levels of Caco3 (0, 20 and 40 g/100g soil), gypsum at three levels (0, 15 and 30 g/100g soil) and two soil textures (Sand and Silt clay loam). Results indicate that irrespective of soil texture, Caco3 application significantly decreased leaf area (by 80% and 15% for sand and silty clay loam texture, respectively), dry weight (by 80% and 15% respectively), plant height (regressed on Caco3 percentage by slopes -0.7 and -0.15 for sand and silty clay loam respectively), and shoot Fe (-9.67 and -11.3) and Zn (-0.24 and -1) uptake, but had no significant effect on shoot Cu uptake. In sandy soil, application of gypsum, significantly decreased leaf area (80%), dry weight (62%), and shoot Cu uptake (slope= -1.93), but had no significant effect on plant height and shoot Zn uptake. Gypsum application significantly reduced shoot Fe uptake (slope= -24.86) in fine textured soil, but it had no significant effect in coarse textured soil.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb