Search published articles


Showing 3 results for H. Jalilvand

H. Latifi, J. Oladi, S. Saroei, H. Jalilvand,
Volume 11, Issue 40 (summer 2007)
Abstract

In order to evaluate the capability of ETM+ remotely- sensed data to provide "Forest- shrub land- Rangeland" cover type map in areas near the timberline of northern forests of Iran, the data was analyzed in a portion of nearly 790 ha located in Neka- Zalemroud region. First, ortho-rectification process was implemented to correct the geometric errors of the image, which yielded 0/68 and 0/69 pixels of RMS error toward X and Y axis, respectively. The original multi-spectral bands were fused to the panchromatic band using PANSHARP Statistical module. The ground truth map was prepared using 1 ha field plots in a systematic- random sampling grid. Vegetative form of trees, shrubs and rangelands was recorded as a criterion to allocate the plots. A set of channels including original bands, NDVI and IR/R indices, and first components of PCA was used for classification procedure. Automatic band selection command was used to select the appropriate channel set.. Classification was carried out using ML classifier on both original and fused data sets. It showed 67% of overall accuracy and 0/43 of Kappa coefficient in original data set. Due to the results present presented above, it's concluded that ETM+ data has an intermediate capability to fulfill the spectral variations of 3 form- based classes, in the studied area. Furthermore, applying complementary methods to minimize the background spectral effect is proposed for future studies.
S. E. Sadati, S. F. Emadian, H. Jalilvand, J. Mokhtari, M. Tabari,
Volume 11, Issue 41 (fall 2007)
Abstract

The present research was conducted to find the influence of some topographic factors on distribution of large-leaved lime (Tilia platyphyllos Scop.) and its natural regeneration characteristics in "Vaz" forest (northern Iran). After identification of site and preparation of topography map, selective sampling method was carried out for tree inventory in plots. The sample plots were circular in 1000-m2 areas with at least 2-3 dominant lime trees in each. In the plots, altitude, slope gradient, direction, forest storey, tree type and natural regeneration were investigated. Results indicate that in this habitat the average diameter at breast height and height of Tilia platyphyllos is 36.9 cm and 23 m, respectively. Tilia platyphyllos prefers 1200-1400 m altitude, 75-100% slope gradient and northeastern to eastern directions and benefits from denser trees in these environments. It consists of some tree types together with Fagus orientalis, Carpinus betulus and Parrotia persica, whereas the dominant type is Tilia platyphyllos-Fagus orientalis. In most of tree types, lime occurs in the upperstorey. Natural regeneration of lime is often observed as sprout (coppice shoot).
A. Goleij, H. Jalilvand, M. R. Pormajidian, M. Tabari, K. Mohammadi Samani,
Volume 11, Issue 41 (fall 2007)
Abstract

In order to investigate the success of natural regeneration and to determine the best area for regeneration settlement, 12 gaps with the areas ranging from 50-100, 150-300, and 400-600 m2 and 4 replicates equal elevation level were selected. For measuring frequency, height, and collar diameter of regenerated seedlings, a certain number of 2 m2 subplots were carried out inside the gaps, along the bigger diameter, and related to each gap’s area. Results showed that the number of seedling varies from 5 (in big gaps) up to 28 (in small and moderate gaps) per square meter. Furthermore, there was not a significant difference between the number of seedlings in small and moderate gaps. In contrast, the number of seedlings in small and moderate gaps was significantly different from those in large gaps (at 1% Probability). This finding demonstrates that natural regeneration would be limited in large gaps (400-600 m2) but it shows a better result in smaller gaps, associated with single- tree harvests. The final result of this study shows that the most appropriate area for selective cuting in such an area is up to at most 300 m2.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb