Showing 18 results for H. Khademi
M. H. Salehi, H. Khademi, M. Karimian Eghbal,
Volume 7, Issue 1 (spring 2003)
Abstract
Clay minerals have considerable effects on physico-chemical properties of soils. Using different techniques, mineralogy of silicate clays and their formation were investigated in selected soils from Chaharmahal and Bakhtiari Province. The study area is about 1300 ha and its soil moisture and temperature regimes are xeric and mesic, respectively. Geomorphologically, the area consists of different landforms including pediments, outwash, hills and piedmont plain. After field and laboratory studies, five representative pedons were selected in previously determined mapping units and samples were taken for the analyses required. Clay particles from two surrounding rock formations and selected soil samples were separated and examined by electron microscopy (SEM and TEM), X-ray diffraction and infrared techniques.
Illite, smectite, chlorite, palygorskite and kaolinite were present in all the soils. Considering the fact that palygorskite was not observed in nearby rock formations, this mineral is probably formed by pedogenic processes. Smectite, on the other hand, has been inherited from parent materials and also transformed from palygorskite. Other minerals had been probably inherited from parent materials. Infrared spectra confirm the X-ray diffraction and submicroscopic results.
M. Sheklabadi, H. Khademi, A. H. Charkhabi,
Volume 7, Issue 2 (summer 2003)
Abstract
Soil erodibility in arid regions, particularly in less developed soils, greatly depends on parent material. The objectives of this study included comparison of the potential of runoff and sediment production in soils with different parent materials and identification of the highly sensitive parent materials in Golabad watershed, 60 km northeast of Isfahan, with about 160 mm of annual precipitation and various geological formations, as one of the highly erodible watersheds in Iran. Soils formed on twelve different parent materials were selected. Rainfall simulator was run for 80 minutes on three replicates of each soil. To have an idea about the rate of runoff and sediment generation with time, runoff loaded with sediment was collected every 10 minutes using plastic containers. After measuring the volume of each runoff sample, it was dried and the amount of sediment was measured. The mechanical parameters of the applied rain were: intensity about 40 mm/hr, rain drop average diameter: 6.56 mm plot size: 1 m2 and kinetic energy of 13.7-17.2 J/m2.mm. Based on the rainfall simulation experiments, soils formed on green andesite and slightly dissected alluvium derived from both sedimentary and igneous rocks created the highest amount of runoff. They also created runoff much more rapidly as compared to other soils. In contrast, soils developed on granodiorite and moderately undulating alluvium produced the least volume of runoff. Furthermore, maximum quantity of sediment was produced from the soils occurring on green andesite and shale. The least sediment yield was observed in soils developed on granodirite and moderately undulating alluvium. Soils formed on shale created the highest sediment concentration and no significant differences were observed among other soils. Based on the results obtained, soils were ranked according to sensitivity to erosion. It is concluded that soil parent materials have a high influence on the production of runoff and sediment yield in Golabad watershed.
M. H. Farpour, M. K. Eghbal, H. Khademi,
Volume 7, Issue 3 (fall 2003)
Abstract
Gypsiferous Aridisols are of great importance and extent in arid and semi-arid environments. There is a close relationship between soil genesis and landscape positions. This study aimed to determine the genesis and classification of gypsiferous soils and to investigate the relationship between micro-and macro-morphology of gypsum crystals and geomorphic positions in Rafsanjan area. The study area is located in Nough, 30 km north of Rafsanjan with a mean annual precipitation of 60 mm. Seven representative pedons were selected on different geomorphic positions. Physico-chemical, micromorphological, XRD, and SEM observations were performed on soil samples. Rock pediment geomorphic surfaces, that are in fact peripheries of old closed water bodies in central Iran, are the source of gypsum in the area. Large gypsum pendants and microforms of lenticular, vermiform, platy, and interlocked gypsum plates are found in rock pediment. The amount of gypsum and the size of pendants decrease moving down the slope. Lenticular and interlocked gypsum plates are found in a transition of pediment and playa. Puffy ground is observed on the saline surface of playa. Lenticular and vermiform gypsum crystals increase down the slope, but alabastrine gypsum is the most dominant form of gypsum in the playa surface. Large amounts of soft gypsum nodules are found on the rock pediment surface (western slope). In addition, spindle form of gypsum and palycrete bundles are observed in this position. Wind action played a significant role in the genesis and development of soil in rock pediment. A close relationship was found between morphology of gypsum crystals and geomorphic positions.
H. R. Karimzadeh, A. Jalalian, H. Khademi,
Volume 8, Issue 1 (spring 2004)
Abstract
Clay minerals deserve special attention as they play a crucial role in many soils. The clay mineralogy of five gypsiferous soils from different landforms in eastern Isfahan was investigated using X-ray diffraction (XRD). In addition, soil aggregates and wind-deposited sediments were examined by scanning electron microscope (SEM) and analyzed by energy dispersive X-ray analyzer (EDX).
The results indicate the presence of palygorskite, mica, kaolinite, chlorite, and quartz with a trace amount of vermiculite and randomly interstratified layers in all soils. Smectite occurs in soils of both the piedmont plain and old river terrace, but not in the alluvial fan soils. Mica, chlorite, quartz, and kaolinite were probably inherited from the parent material. Palygorskite seems to increase with depth in the alluvial fan, whereas, in the old terrace soils, this clay mineral decreases with depth. Palygorskite present in alluvial fan soil appears to have been formed authigenically when the basin was covered with shallow hyper-saline lagoons toward the end of the Tertiary. Palygorskite in the old terrace seems to be mostly detrital and an eolian origin of palygorskite is likely because a large amount of palygorskite is present in upper soil horizons. A higher proportion of smectite in deep soils of the old terrace, as compared with palygorskite, suggests the possibility of authigenic formation of smectite from palygorskite.
.
H. Khademi, H. Khayyer,
Volume 8, Issue 2 (summer 2004)
Abstract
Understanding the variability of pedological properties as well as the soil quality attributes on different landscape positions in hummocky terrains would result in a better land management in such areas. Despite the importance of such studies, no research has been couducted on the landscape-scale variability of soil quality indices in Iran and most researchers have so far focussed on pedological aspects of soil variability. The objective of this study was to understand the variability of selected soil quality indices at different landscape positions. A systematic grid including 120 points (12x10) with a distance of 30m was laid out in a hummocky rangeland around the city of Semirom. Surface soil samples were taken from 120 points on grid nodes and their organic carbon, microbial respiration rate, phosphatase activity, pH and EC were measured. Also, the thickness of A horizon and the soil moisture content were measured on grid nodes in the field.
The results indicated that the lower slope positions including footslope and toeslope had the highest amount of phosphatase activity, microbial respiration, A horizon thickness, organic carbon, and EC. In contrast, soils occuring on shoulder had the least amount of the above-mentioned properties. Soils on summit and backslope seem to have been moderately degraded. Soil pH showed the opposite trend, as compared to other properties studied. The presence of a great variability in soil quality attributes at the landscape scale can be attributed to differenes in effective moisture that various landscape positions receive, as well as the differenes in soil erosion and deposition rates. This can also be an indication of a severe land degradion due to poor management practices. Since applying different management practices on different landscape positions are practically impossible, to be on the safe side, it is highly recommended to plan conservation practices based on soil quality of the most degraded landscape positions.
J. Mohammadi, H. Khademi, M. Nael,
Volume 9, Issue 3 (fall 2005)
Abstract
In order to achieve a sustainable management of land resources and to improve land quality, quantitative assessment of effective factors and soil quality indicators are required. The aim of this study was to evaluate variability of selected soil quality attributes in central Zagros affected by such factors as region, land use and management practices. Twelve sites were selected in three provinces including Chahar Mahal va Backtiari (Sabzku, Broujen), Isfahan (Semirum), and Kohkeloyeh va Boyerahmad (Yasodje). Different management practices were considered such as: protected pasture, intensive grazing, controlled grazing, dryland farming, irrigated wheat cultivation, legume-farming practice, protected forest, and degraded forest. Systematic sampling with taking 50 samples of surface soil in each site was carried out. The results of univariate and multivariate analysis revealed that all factors significantly influenced the spatial variability of selected soil quality attributes namely phosphatase activity, microbial respiration, soil organic matter, and total nitrogen. The results obtained from discriminant analysis indicated that all selected soil quality parameters could significantly be used as soil quality indicators in order to recognize and discriminate sustainable agricultural and forestry ecosystems and/or optimal management practices.
M. Amini, M. Afyuni, H. Khademi,
Volume 10, Issue 4 (winter 2007)
Abstract
Heavy metals including cadmium (Cd) and lead (Pb) are entering agricultural soils from different routes and mainly due to human activities. Accumulated Cd and Pb in the soil would eventually enter the human and animal food chains and pose threat to their health. Therefore, evaluating heavy metal accumulation is necessary to prevent soil and environmental pollutions and should be considered by researchers as well as policy makers. This study was conducted to model the accumulation rates of Cd and Pb in the agro-ecosystems of Isfahan, Mobarakeh, Lenjan, Borkhar, Najafabad, Khomeinishahr and Felavarjan. Cadmium and lead accumulation rates in the agro-ecosystems were computed using a stochastic mass balance model which uses Latin Hypercube sampling in combination with Monte-Carlo simulation procedure. Agricultural information including crop types, crop area and yield, the type and the number of livestock, application rate of mineral fertilizers, compost and sewage sludge and also metal concentration in plant and amendments were used to quantify Cd and Pb accumulation rates. Modeling Cd and Pb accumulation rates indicated that the metals are accumulating in the agricultural lands in the studied townships. The largest Cd (18 g ha-1 yr-1) and Pb (260 g ha-1 yr-1) accumulation rates were found in the township of Isfahan but the minimum accumulation rates were found in township of Lenjan for Cd (3 g ha-1 yr-1) and Mobarakeh for Pb (10 g ha-1 yr-1). The major input route to agricultural soils is phosphate fertilizers for Cd but for Pb is manure on the regional scale. High application rates of sewage sludge and compost in agricultural lands in the township of Isfahan could result in considerable amounts of Cd and Pb entering the soils of this region.
M. Yousefifard, A. Jalalian, H. Khademi,
Volume 11, Issue 40 (summer 2007)
Abstract
Improper use of natural resources, especially soil, causes its degradation and severe soil erosion. Water erosion is an important factor causing soil degradation. Land use change of pasture would result in severe soil erosion mainly due to the reduction of vegetation cover and also surface soil disturbance. The objectives of this study were to estimate the amount of sediment, runoff and nutrient loss in four different land uses including a pasture with good vegetation cover (> 20%), a pasture with poor vegetation cover (< 10%), a currently being used dryland farm and a degraded dryland farm which is not used. Soil samples were taken from the depth of 0–10 cm in a completely randomized design with four replications. A rainfall simulator was run for two hours to estimate the amount of sediment, runoff and nutrient loss. Organic matter, total N, available P and distribution of particles size in soil and sediment were measured. The results showed that a very high degradation has occurred in the area mostly due to water erosion created as a result of overgrazing in pasture, susceptibility of geological formations and more importantly, the change of land use pasture to inefficient dryland farming. Maximum and minimum runoff was observed in the abandoned dry landfarm and pasture with good vegetation cover, respectively. Maximum sediment content was observed in dryland farm. Sediment content in dryland farm, abandoned dry landfarm and pasture with poor vegetation cover were 54.5, 21 and 10.4 times more than that in the pasture with good vegetation cover, respectively. Enrichment ratio (ER) of soil particles in sediment was highest for fine silt (2-5µm), followed by clay. A minimum of ER was obtained for sand fraction. Percentages of organic matter, total N and available P in sediment were higher in the first hour as compared to the second one. This is mainly due to the fact that fine particles are removed at the beginnings of the rainfall event. Total removal of these chemical factors was highest in dryland, intermediate in pasture with poor vegetation cover and abandoned dryland and lowest in pasture with good vegetation cover. In general, cultivation and disturbance of the pasture in the area land have caused a great decrease in soil quality and made the surface very sensitive to erosion.
M. Sheklabadi, H. Khademi, M. Karimian Eghbal, F. Nourbaksh,
Volume 11, Issue 41 (fall 2007)
Abstract
The effect of overgrazing on vegetation changes in central Zagros has been studied by a few scientists, but there is no detailed information on the impact of such practices on soil properties. The objective of this study was to assess the effect of climate and grazing management on selected soil biochemical properties. Fourteen experimental range sites protected against grazing as well as their adjacent overgrazed sites in Chadegan, Pishkuh and Poshtkuh were selected. In each site, samples were collected from the depths 0-5 and 5-15 cm. Soil organic C (OC), microbial biomass C (MBC), total nitrogen (TN), organic C to total N ratio (C/N), microbial biomass C to organic C ratio (Cmic/Coc) and metabolic quotient (qCO2) were measured and/or calculated. The results showed that the lowest SOC, MBC, TN and Cmic/Coc occur in Chadegan due to low fresh materials input. The above parameters in Pishkuh and Poshtkuh regions are 2.5 to 3 times greater than those in Chadegan area. Grazing intensity in Pishkuh is less than that in Poshtkuh region and there is no significant difference between grazed and protected sites in Pishkuh. But, there is a significant difference between grazed and protected plots in Poshtkuh due to a higher grazing intensity. Higher Cmic/Coc and lower qCO2 suggest that the quality of organic matter is better in Poshtkuh and Pishkuh. In conclusion, highly degraded rangelands in Pishkuh and Poshtkuh seem to be able to recover very quickly with proper management, while Chadegan region needs a much longer period of time to restore.
F. Kiani, A. Jalalian, A. Pashaee, H. Khademi,
Volume 11, Issue 41 (fall 2007)
Abstract
To investigate the degree of forest degradation and the effect of land use change on selected soil quality attributes in loess-derived landforms, samples were taken from different land uses including forest, rangeland, degradated rangeland and farmland in Pasang watershed located in the Galikesh area of Golestan province (37°16'N, 55°30'E). The annual average temperature and mean precipitation of study area were 15°C and 730 mm respectively. Organic matter, pH, EC, CaCO3 and nutrients (N, P, K) as chemical indicators, hydraulic conductivity, bulk density and porosity as physical indicators and soil respiration as biological indicator were measured. The results showed that the amount of organic matter decreased three percent when it was turned from forest to farmland, and increased two percent from farmland to rangeland. The amount of CaCO3 in surface layer of deforested area was more than in the forest soils. The amount of soil N in forest and soil P and K in rangeland were higher than in other land uses. Bulk density and porosity in forest and MWD in rangeland were higher than in other land uses because of the decrease in organic matter due to farming activities. Soil respiration in forest was highest as compared to in other land uses. Difference of enzymes activities (L-asparaginase and Dehydrogenase) compared to microbial respiration indicates that enzymes activity is related to specific biological processes while soil microbial respiration basically depends on the general activity of soil microbial population. It could be concluded that amount of organic matter, soil N, bulk density, porosity, MWD, soil respiration and enzymes activities are suitable indicators for soil quality evaluation in this area.
M. Nael , A. Jalalian , H. Khademi , M. Kalbasi , F. Sotohian , R. Schulin ,
Volume 14, Issue 54 (winter 2011)
Abstract
Geologic and pedologic controls are the main factors determining the distribution of elements in natural soil environments. In order to assess the role of these factors in the content and distribution of major elements of soil, six parent materials including phyllite (Ph), tonalite (To), periditite (Pe), dolerite (Do), shale (Sh) and limestone (Li) were selected in Fuman-Masule region. Soil genesis and development of representive residual pedons were studied for each parent material. Total content of Si, Al, Ca, Mg, Fe, Mn, K, Na, Ti and P of soil horizons were measured and compared to the geochemical and mineralogical composition of parent materials. Maximum concentrations of Fe2O3 and MgO were found in the soils derived from Pe and Do however, these soils had low content of SiO2 and Al2O3, which is in conformity with the geochemical composition of the parent rocks. On the contrary, FeCBD content of these soils was lowest, indicating the low degree of soil development and, by the same fact, the importance of inheritance factor in soil Fe concentration. However, comparison of total Fe and FeCBD in Li1, Sh2 and To2 revealed that relative development of these pedons is higher than the others. Silicon depletion in Ph1, To2 and Sh2 pedons, relative to parent rocks, is higher than in Pe and Do pedons. However, this element is enriched in Li pedons. MnO content of Pe and Do pedons is governed by geogenic factors, while in Sh pedons, pedogenic factors, especially redox conditions, play the major role. Exchangeable forms of Ca and Na are determined by soil properties rather than by parent material type. Notwithstanding the redistribution of all major elements throughout pedons due to soil forming processes, the importance of inheritance factor in soil Si, Al, Mg, Fe, K, and Ti is higher than pedogenic factors.
Z. Naderizadeh , H. Khademi ,
Volume 15, Issue 56 (sumer 2011)
Abstract
Many studies have been carried out on the effect of organic matter on soil physical, chemical, biological, and nutritional properties, including the effect of organic matter on the availability of such elements as P, N and heavy metals. There is, however, no information on the effect of organic matter on potassium uptake from micaceous minerals. The objective of this study was to investigate the effect of organic matter on potassium uptake from micaceous minerals released by alfalfa. An experiment was laid out in a completely randomized design with factorial combination and three replicates. Growth medium was a mixture of quartz sand, micaceous mineral (muscovite or phlogopite) and organic matter (0, 0.5 and 1 %). Rehnani cultivar of alfalfa was used in the experiment. During 120 days of cultivation, plants were irrigated with either complete or K-free nutrient solution and distilled water as needed. At the end of cultivation, plant shoots and roots were separately harvested and their K concentration was measured by flame photometer following dry ash extraction. Under the K-free nutrient solution, a significant increase in biomass occurred in pots containing phlogopite and organic matter as compared to those with no organic matter amendment. Also, under K-free condition, potassium concentration in shoot was above the threshold value only in phlogopite amended pots. There was no significant difference in K concentration among different levels of organic matter in control treatment as well as in muscovite added treatment. Under both nutrient solutions treatments, significant increase of K uptake occurred in pots containing phlogopite and organic matter, as compared to those without it. In contrast, under K free nutrient solution, organic matter amendment could not enhance the K uptake in pots containing dioctahedral mica (muscovite). Root activities and organic matter decomposition appear to have increased rhizosphere acidity which, in turn, facilitate the K release from trioctahedral mica (phlogopite) in K deficient medium. Thus, the effect of organic matter on K release greatly depends on the type of micaceous mineral.
M. Karam, M. Afyuni, A. H. Khoshgoftarmanesh, M. A. Hajabbasi, H. Khademi, A. Abdi,
Volume 16, Issue 61 (fall 2012)
Abstract
The task of modern agriculture is to safeguard the production of high quality food, in a sustainable natural environment under the precondition of pollution not exceeding accepted norms. The sustainability of current land use in agro-ecosystems can be assessed with respect to heavy metal accumulation in soils by balancing the input/ output fluxes. The objectives of this study were to model accumulation rate and the associated uncertainty of Zn in the agro-ecosystems of 3 arid and semi-arid provinces (Fars, Isfahan and Qom). Zinc accumulation rates in the agro-ecosystems were computed using a stochastic mass flux assessment (MFA) model with using Latin Hypercube sampling in combination with Monte-Carlo simulation procedures. Agricultural information including crop types, crop area and yield, kind and number of livestock, application rates of mineral fertilizers, compost and sewage sludge and also metal concentration in plants and soil amendments were used to quantify Zn fluxes and Zn accumulation rates. The results indicated that Zn accumulates considerably in agricultural lands of the studied townships especially in Najafabad (3009 g ha-1yr-1). The major Zn input routes to the agricultural soils (and due to agricultural activities) were manure and mineral fertilizers and the major part of the uncertainty in the Zn accumulation rate resulted from manure source.
A. Karimi, H. Khademi,
Volume 16, Issue 61 (fall 2012)
Abstract
Magnetic susceptibility measurement is a simple and quick technique for characterizing soils and sediments and describing soil-forming processes. The interpretation of soil magnetic susceptibility data needs sufficient knowledge about the factors affecting this parameter. To identify the effects of parent material, gypsum and calcium carbonate equivalent, 42 samples were taken from horizons of soils developed on loessial, alluvial, granitic and marly materials in southern Mashhad. Gypsum and carbonates of soil samples were removed by successive washing with distilled water and diluted HCl, respectively. Magnetic susceptibility of bulk samples (lfbulk), gypsum free samples (lfGf), gypsum and carbonates free samples (lfGCf) and gypsum, carbonates and sand free samples (lfGCSf) was measured. The results revealed a strong 1:1 correlation between the measured and calculated lfGf and lfGCf. Despite the high amounts of gypsum and carbonates in soils developed on marls, their lfbulk was much more than that of the other soils and reached up to 121.8×10-8m3 kg-1. In contrast, the lfbulk values of saprolitic granite were less than 10.4×10-8m3 kg-1. The lfbulk values of loessial and alluvial soils were less than those of marly soils but higher than those of soils developed on saprolitic granite. lfbulk values were negatively correlated with the amount of sand. However, reduction in magnetic susceptibility values of marly soils after removing sand reflects the different nature of this soil. The correlation between lfbulk and amount of silt and clay is positive, but the magnetic susceptibility values are more sensitive to clay percentage, indicating the more important contribution of clay to magnetic susceptibility values. The results of this study highlight the role of parent materials, gypsum and carbonates in the soil magnetic susceptibility values that should be considered.
A. Jafari, H. Khademi, Sh. Ayoubi,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract
Digital soil mapping includes soils, spatial prediction and their properties based on the relationship with covariates. This study was designed for digital soil mapping using binary logistic regression and boosted regression tree in Zarand region of Kerman. A stratified sampling scheme was adopted for the 90,000 ha area based on which, 123 soil profiles were described. In both approaches, the occurrence of relevant diagnostic horizons was first mapped, and subsequently, various maps were combined for a pixel-wise classification by combining the presence or absence of diagnostic horizons. Covariates included a geomorphology map, terrain attributes and remote sensing indices. Among the predictors, geomorphology map was identified as an important tool for digital soil mapping approaches as it helped increase the prediction accuracy. After geomorphic surfaces, the terrain attributes were identified as the most effective auxiliary parameters in predicting the diagnostic horizons. The methods predicted high probability of salic horizon in playa landform, gypsic horizon in gypsiferous hills and calcic horizon in alluvial fans. Both models predicted Calcigypsids with very low reliability and accuracy, while prediction of Haplosalids and Haplogypsids was carried out with high accuracy.
A. Mousavi, F. Khayamim, H. Khademi, H. Shariatmadari,
Volume 18, Issue 67 (Spring 2014)
Abstract
In Iran, no research has yet been performed on potassium release from feldspar in comparison with that from muscovite. The objective of this research was to compare potassium release kinetics of these minerals as influenced by organic and inorganic extractants using successive extraction method. The experiment was carried out in a completely randomized design with a factorial combination. Treatments consisted of three kinds of K-bearing minerals (Muscovite, and Yazd and Ward feldspars), three extractants including CaCl2, oxalic and citric acids of 0.01 M concentration and 6 times of extraction (1, 2, 8, 24 and 48 hours). The results indicated that the potassium release from muscovite was 6-8 times higher than that from feldspars. The type of extractant significantly affected potassium release. Potassium release by organic extractants was 2.5-3 times higher than that by CaCl2 as an inorganic extractant. Different kinetic equations showed that power function, parabolic diffusion and first order equations adequately described K release whereas Elovich equation did not. Among the three equations, power function equation was selected as the best model describing K release from the minerals. Based on the selected kinetic equations, it seems that potassium release from K-bearing minerals is controlled by diffusion process.
T. S. Taleghani , H. Khademi, M. Afyuni ,
Volume 18, Issue 67 (Spring 2014)
Abstract
Stabilizing heavy metals in polluted soils is a method to prevent them from entering plants. Clay minerals are considered good sorbents for heavy metals due to their low cost, high abundance, easy manipulation and harmlessness to the environment. The objective of this study was to investigate the potential of clay deposits containing smectites and palygorskite to sorb cadmium and to reduce its movement into canola. Two selected deposits are located in the Isfahan Province. Physical and chemical characteristics of clay deposits were determined. The clay fraction was then separated from each deposit sample. This study showed that palygorskite was the dominant clay mineral in deposit sample 1 and smectites in deposit sample 2. These clays were then used as an amendment to plant growth medium. Pot experiment was carried out with canola (Brassica napus) as a test plant with 3 replicates. Treatments included three growth media: smectite + quartz sand, palygorskite + quartz sand and pure quartz sand (control treatment) under 3 Cd concentrations: 0, 2.5 and 7.5 ppm. Results obtained from the pot experiment indicated that deposits containing smectite and palygorskite were very useful in stabilizing cadmium in polluted soils and could prevent Cd from entering plant. Smectite clay mineral could retain a higher quantity of cadmium as compared to palygorskite. Plants in pots amended with smectite had a higher growth rate as compared to those in control and palygorskite amended pots. Cadmium accumulation in plant roots was much higher than that in shoot. Furthermore, the higher Cd concentration in growth media resulted in the higher amount of Cd uptake by the plant.
Z. Mahmoodi, H. Khademi ,
Volume 18, Issue 67 (Spring 2014)
Abstract
Atmospheric dust is an important source of heavy metals, particularly in urban environments. Heavy metals can easily attach to dust particles and be distributed in large areas. The objective of this study was to evaluate the status of major heavy metals in the atmospheric dust of Isfahan and adjacent cities. A total of 144 dust samples were taken during a period from August to December 2010 from Isfahan, Khomeynishahr, Falavarjan, Mobarake and Zarinshahr cities. Dust samples were extracted with HNO3 65% and the total concentration of metals including Pb, Zn, Cd, Cu, Ni, Co, Cr and Mn in the samples was measured by an atomic absorption spectrometer. The mean concentration of these metals was 223.5, 470.3, 3.5, 71.0, 82.0, 26.5, 24.4 and 426.3 mg kg-1, respectively. Results indicated that heavy metals concentration in any area was different depending on the source of pollution and it was much higher than the mean concentration of the corresponding heavy metal in soils. Besides, the highest deposition rate of all the heavy metals in this study was found in November-December period. This could be attributed to an increase in the use of heating systems and also to a temperature inversion event prevailed in the area. Atmospheric deposition seems to be an important pathway of heavy metals addition to soils. For example, it is responsible for 35-91% and 12-47% of Pb and Cd entering the soil in the area, respectively.