Showing 2 results for H. Moazed
M. Farasati, S. Boroomandnasab, J. Abedi Koupai, N. Jafarzadeh, H. Moazed, M. Saiedian,
Volume 16, Issue 61 (fall 2012)
Abstract
The effect of sugarcane straw anion exchanger with Micro and Nanostructure scale as the adsorbent for contaminated water treatment was investigated. The effects of operating conditions such as adsorbent loading, initial anion concentration, pH and the presence of competitive ions on the adsorption performances were examined. Equilibrium time and pH and adsorbent dosage were 3h, 6 and 0.5g respectively. The effect of initial concentration on the adsorption of NO3- ions by sugarcane straw anion exchanger was investigated by varying solution concentrations (5-120 mg L-1) using 0.5g adsorbent dose. For micro and nanostructures, adsorption capacity was (0.38-6.94 mg g-1) and (0.44-7.51 mg g-1) respectively. In the column experiment, for micro and nanostructures with (15, 50 and 120 mg L-1) and 0.98 L hr-1 flow rate, adsorption capacity was (8.73, 25.71and 36.25 mg g-1) and (12, 27 and 48.15 mg g-1) respectively. The result of this study indicated that sugarcane straw anion exchanger with micro and nanostructure scale could be used for the removal of nitrate ions in the contaminated water treatment. sugarcane straw anion exchanger -nanostructure adsorbent had higher adsorption than micro adsorbent for nitrate removal.
M. Moradzadeh, H. Moazed, G. Sayyad,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract
The objective of this study was to investigate the effect of potassium zeolite on ammonium ion sorption and retention in a saturated sandy loam soil in laboratory conditions with four treatments of 0, 2, 4 and 8 g zeolite per kg soil. The study was conducted as a completely randomized block design. Simulation of ammonium ion leaching was performed using Hydrus-1D model in the soil columns. Ammonium nitrate fertilizer with a concentration of 10g per liter was added to soil columns and then leaching was performed. Results of the study showed that adding potassium zeolite to soil causes reduction in the mobility of ammonium ion and increase in the retention of ammonium in soil. Also, the results of the Convection- Dispersion (CDE) and Mobile- Immobile (MIM) models investigation indicated that the ammonium ion sorption by soil followed the Freundlich isotherm model. Absorption isotherms and diffusion and dispersion coefficients were determined using the inverse modeling technique. Based on the results obtained, optimized values of Freundlich isotherm of model were much less than the observed amounts. This shows that the Hydrus-1D model is not able to predict the ammonium ion mobility in soil macropores, and as a result, reduces greatly the amount of absorption parameters. Because the soil was disturbed, CDE model estimation was closer to the observed values in all four treatments