Search published articles


Showing 4 results for H. R. Owliaie

H. R. Owliaie, E. Adhami, H. Faraji, P. Fayyaz,
Volume 15, Issue 56 (sumer 2011)
Abstract

Trees in many forests affect the soils below their canopies. Analysis of the relationships between trees and soil is one of the basic factors in management and planning of forests. Zagros forest ecosystem is one of the main degrading forest ecosystems in Iran and plays an important role in soil protection. Quercus brantii is the most important woody species in these forests. This study was conducted to determine the influence of oak on selected physico-chemical properties of soils of three oak forests in Yasouj region. The experimental design was a factorial 332 (3 depths, 3 regions and 2 distances) in a randomized complete block design with four replications. Soil samples (0-20, 20-40 and 40-60 cm depth) were taken from beneath canopies and adjacent open areas. The results showed that oak canopy increased mostly organic carbon, total N, available K, P, EC, EDTA extractable Fe, Zn and Mn, while CCE, pH, and DTPA extractable Cu were decreased. Oak canopy had no significant effect on soil texture. Our results suggested that the presence of Quercus brantii individuals may be an important source of spatial heterogeneity in these forests.
M. J. Fereidooni, H. Farajee, H. R. Owliaie, E. Adhami,
Volume 16, Issue 60 (Summer 2012)
Abstract

Effect of urban sewage and nitrogen on soil chemical characteristics in sweet corn was evaluated in Yasouj region at 2009. Five irrigation treatments were managed common water during entire period of growing season as control (I1) urban sewage during the first half of growing season (I2) urban sewage during the second half of growing season (I3) alternate urban sewage and common water (I4) and urban sewage during entire period of growing season (I5) and three nitrogen rates (N0=0, N80= 80 and N160=160 kg N ha-1) in a completely randomized design with three replications. Results indicated that the soil N, P and K concentrations in treatment I5 had a significant difference compared to the other irrigation treatments. Irrigation levels were also exhibited a significant difference in soil organic matter and EC. Maximum and minimum of soil organic matter were observed in I5 (%0.45) and in I1 (%0.33), respectively. Maximum and minimum of soil EC were found in I5 (2.0 dsm-1) and in I1 (1.4 dsm-1), respectively. Irrigation treatments did not show a significant change in soil pH. The effect of irrigation and interaction between irrigation treatments and nitrogen rates were not significant on available forms of Fe, Zn, Cu and Mn in soil. The effect of nitrogen fertilizer was significant on soil N content. Maximum (%0.034) and minimum (%0.030) of soil nitrogen were noticed in N160 and N0, respectively.
H. R. Owliaie,
Volume 16, Issue 62 (Winte - 2013 2013)
Abstract

Iron and manganese oxides as well as hydroxide minerals are among active constituents in soils because they are sensitive to environmental changes and often move frequently along soil profile. Therefore, their chemical forms content and their ratios are used as a soil developmental criterion. The present study was conducted in order to evaluate the effects of topography and drainage conditions on chemical forms of Fe and Mn along a soil catena in Dasht-e- Roum plain, in Kohgilouye Province. According to the results, maximum pedogenic Fe and Mn (Fed and Mnd) was found in more stable geomorphic surfaces. Higher values of Fed and Mnd were mostly observed in surface horizons compared to soil depth. Aquic soils exhibited higher contents of poorly crystalline Fe and Mn (Feo and Mno) and higher contents of Fed and Mnd. A significant correlation between clay content and Feo, Mno, Fet and Mnt contents was found. In addition, aquic condition increased Feo/Fed, Mno/Mnd and Mnd/Fed, 3.1, 4.3 and 1.9 times respectively but decreased the Fe crystallinity index 2.6 times. Aquic soils seem to have more favorable conditions for the formation of pedogenic Mn compared to pedogenic Fe, hence higher content of Mnd/Fed was observed in these soils
H. R. Owliaie, M.najai Ghiri,
Volume 17, Issue 65 (fall 2013)
Abstract

Paddy soils provide the staple diet for nearly half of the world's population. The formation of the Anthrosols is induced by tilling the wet soil (puddling), flooding and drainage regimes associated with the development of a plow pan and specific redoximorphic features. The aim of this study was to evaluate the effects of long-term rice cultivation on physico-chemical properties and clay mineralogy of soils of three rice farms and compare the results with adjacent virgin lands in Yasouj region. Paddy soils exhibited larger contents of clay, organic carbon, saturation percentage, cation exchangeable capacity, cation exchange activity classes, electrical conductivity and lower content of calcium carbonate equivalent compared to non-paddy soils. This land use showed higher proportions of Feo, Fet and lower content of Fed. No such differences were noticed with the type of clay minerals in both land uses. Paddy soils contained greater amount of smectite, particularly in the surface horizons. Smectite in paddy soils exhibited lower layer charge and higher degree of crystallinity compared to non-paddy soils. Transformation of illite and chlorite to expandable minerals is a possible mechanism for lower amounts of these minerals in paddy soils.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb