Search published articles


Showing 3 results for Haghighati

S. Heydari Soreshjani, M. Shayannejad, M. Naderi, B. Haghighati,
Volume 19, Issue 73 (fall 2015)
Abstract

In order to investigate the effect of different levels of irrigation on qualitative and quantitative yield and determine the corn's optimum depth of Irrigation in sShahrekord, a randomized complete block design experiment was done with 7 treatments including 40, 55, 70, 85, 100, 115 and 130 percent of soil moisture deficit and three replications in furrow irrigation. Effects of irrigation levels on yield, water use efficiency, weight of dry matter, plant height, stem diameter, median diameter, length and weight of corn were significant. Different levels of irrigation had no significant effect on seed oil and protein content, but their impact on plant fiber content was significant. With increasing depth of irrigation, stem length, grain weight and plant fiber content increased. The minimum and maximum corn yield were related to 40 and 130% of full irrigation with the yield of 43.1 and 88.1 tons per hectare, respectively. The maximum and minimum use efficiencies were 55 and 130% of full irrigation treatments with values ​​of 16.17 and 10.1 Kg per cubic meter, respectively. The result of economic analysis showed that the water consumption is 5/582 mm, equivalent to 86% full irrigation depth.


M. Naderi, M. Shayannejad, B. Haghighati, S. Karimi, S. Heydari,
Volume 21, Issue 3 (Fall 2017)
Abstract

Considering water scarcity in Iran, application of deficit irrigation or water stress on some crops is inevitable. We need to provide appropriate design for deficit irrigation. Furrow irrigation management to obtain high efficiency and uniformity is difficult. Therefore, to investigate the variation of the input discharge, the cut-off time and furrow length that are effective on the efficiency and uniformity are very important. The purpose of this research is to provide a method for determining the optimum water use depth and optimizing furrow irrigation design in deficit irrigation conditions and finally comparing design characteristics under full irrigation conditions and deficit irrigation and comparison in different soil tissues. In order to achieve the objectives of this research, an experiment was conducted on forage corn in Shahrekord in a completely randomized block design with 7 treatments of different levels of irrigation in 3 replications. The costs and benefits functions were determined based on design variable and depth of applied water. The software Lingo was used to optimize the design variables (length of the furrow, the input discharge and cut-off time) and depth of applied water in deficit irrigation condition. The results showed that the highest net profit was obtained using 535 mm (equivalent to 79% of full irrigation) and 85 meters, 0.39 liter per second and 188 minutes, respectively, for the length of furrow, input discharge and cut-off time. The results of this design were compared to full irrigation of deferent soil textures. The results showed that an increase in the permeability of the soil caused length of furrow and the cut-off time to decrease, while the flow rate increases and depth of applied water or percent of deficit irrigation were constant.

B. Naderi-Samani, M. Ghobadinia1, B. Haghighati, S.m.r. Hosseini-Vardanjani, A.r. Ahmadpour-Samani,
Volume 29, Issue 1 (Spring 2025)
Abstract

Awareness of the impact of water deficit stress on the quantitative and qualitative performance of agricultural products, considering the recent recurrent droughts and reduced precipitation, is essential for water consumption management. This study aimed to evaluate the effects of different irrigation deficit treatments on the yield, yield components, and water use efficiency of autumn wheat in the Shahrekord region. An experiment with three replications was conducted in a completely randomized block design at the Agricultural and Natural Resources Research Center of Chaharmahal Va Bakhtiari Province during 2023-2024. The experimental treatments included four irrigation levels: full irrigation (T100), 80% of full irrigation (T80), 60% of full irrigation (T60), and 40% of full irrigation (T40). The application of the T60 deficit irrigation treatment resulted in a reduction of more than 14% in grain yield, while the T80 treatment caused a more than 31% decrease in grain yield. Additionally, the T60 treatment exhibited the highest water use efficiency at 1.22 kg per cubic meter, while the water use efficiency for the T100, T80, and T40 treatments was 1.06, 1.12, and 1.19 kg per cubic meter, respectively. The results showed that water deficit irrigation significantly affected the grain yield, biomass, and water use efficiency of autumn wheat under the climatic conditions of the Shahrekord region. The results of this study indicated that the T80 deficit irrigation treatment could have a more acceptable performance in terms of water efficiency.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Water and Soil Science

Designed & Developed by: Yektaweb