Search published articles


Showing 2 results for Haghnazari

M. Salehi, A. Haghnazari, F. Shekari, H. Baleseni,
Volume 11, Issue 41 (fall 2007)
Abstract

In order to evaluate relationship between Different traits in lentils (lens culinaris Medik), a field study was conducted as an RCBD based design with 3 replications on Zanjan University Research Farm during spring of the year 2004. ANOVA analysis revealed significant differences for all characters except for the number of primery branches. Correlation analysis indicated positive and significant correlation between seed yield and harvest index, number of primery branches, pods/plant and biological yield, and grian yield. The result of the factor analysis also showed that the second factor including number of primery branches, pods/plant, grian yield, canopy width and seeds/plant was an important trait involved in the grian yield in lentil. In addition, cluster analysis helped divide the genotypes into four distance groups of large, medium, semi medium and low yields.
F. Haghnazari, M. Ghanbarian Alavijeh, A. Sheini Dashtegol, S. Boroomand Nnasab,
Volume 25, Issue 1 (Spring 2021)
Abstract

Changes in soil infiltration cause changes in irrigation efficiencies; therefore, estimating it in calculating irrigation efficiencies provides a more accurate estimate of irrigation performance indicators. In a study conducted on ARC2-7 farm in Amirkabir agro-industry in the 2010-2011 crop year, during four irrigations; two furrows were selected in terms of uniform infiltration and variable infiltration with a length of 140 and a width of 1.83 m. In the furrow assuming uniform infiltration two flume type II, at the beginning and end of it, were installed and the cumulative infiltration was determined by the volume balance method. The furrow with variable conditions was divided into four sections by installing five flumes. By examining the spatial variations of the mean cumulative infiltration, its value decreased from the first to the fourth section for the first irrigation by 15% and for the subsequent irrigations by 13%. Temporal changes of cumulative infiltration decreased by 27 and 30% for the first and second sections and by 26% for the third and fourth sections. An 11% increase in the average weight of the aggregate diameter and a 7% decrease in bulk density indicate physical changes in the soil. Surface runoff losses increased from 8 to 18.77% in the furrow assuming uniform infiltration and from 10.91 to 19.77% in the furrow with variable infiltration, and application efficiency decreased by 6%.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb