Search published articles


Showing 7 results for Hojati

M Hojati, N Etemadi, B Bani Nasab,
Volume 13, Issue 47 (4-2009)
Abstract

This study was conducted to evaluate the effects of paclobatrazol and cycocel on some quantitative and qualitative traits of zinnia. Seedlings were transplanted on Horticulture Department Farm , College of Agriculture, Isfahan University of Technology. The experiment was carried out in the framework of randomized complete block with 3 replications. Triats which were studied included plant height, leaf and flower number, lateral shoot number, flower diameter, lateral shoot lenght, leaf chlorophyl content, the period of the flowering, root fresh and dry weight, leaf area, root number, diameter and length, root and shoot carbohydrate. Results showed that cycocel at 1000 and 2000 ppm reduced height. Cycocel 2000ppm caused most lateral shoot and flower number and the lowest lateral shoot length. The lowest root fresh and dry weight, root number and length and shoot carbohydrate were obtained by cycoel 2000 ppm. Paclobutrazel at 30ppm resulted in the most leaf chlorophyl content. There were no significant differences between treatments related to the period of the flowering, flower diameter, leaf number and area, root diameter and carbohydrate.
M. Farzadian, S. Hojati, Gh. A. Sayyad , N. Enayatizamir,
Volume 19, Issue 72 (summer 2015)
Abstract

One of the major problems associated with petroleum-contaminated soils is water repellency, especially in arid regions of the world. Hence, a variety of methods such as clay addition has been proposed to improve the hydrophobicity of soils. This research was conducted to evaluate the influence of zeolite application on water repellency of an oil-contaminated soil from Khuzestan Province under various treatments including initial soil moisture content (0, 10, 20, and 30 weight %), the amount of applied zeolite (2, 4 and 8 weight %), size (25-53 and <2 μm), and exchangeable cation (Sodium and Calcium). The hydrophobicity of soil sample was determined using Water Drop Penetration Time (WDPT) method. The results showed that by increasing the amount of applied mineral WDPT decreased, where the application of 2 percent of zeolite led to the reduction of WDPT by about 27 percent less than the control. The results also indicated that soils treated with sodium-saturated zeolite had less WDPT than the calcium-treated samples, where the average of WDPT in sodium and calcium treatments decreased by 23% and 5% compared with the control, respectively. The initial moisture content of 30 percent showed the best performance with the decreasing WDPT of about 67 percent. Furthermore, the effect of mineral particle sizes showed a meaningless reduction in WDPT.
Z. Savari, S. Hojati, R. Taghizadeh-Mehrjerdi,
Volume 20, Issue 77 (Fall 2016)
Abstract

Salinity and alkalinity decreases physical, chemical and biological quality of soils and as a result reduces crop yield. This study aims to evaluate spatial variability of soil salinity in Ahvaz using geostatistical approaches. Accordingly, 69 surface soil samples (0-10 cm) were collected and their electrical conductivities (EC) were measured in 1:1 soil: water extracts. The data were then analyzed using ordinary kriging (OK), log-normal kriging (LOK) and indicator kriging (IK) interpolation techniques to produce soil salinity maps. Finally, the quality control of soil maps was performed by calculation of root mean square error (RMSE) and coefficient of determination (R2). The results indicated that due to the lowest RMSE and the highest R2 values, the LOK interpolation method is the best approach in mapping soil salinity in Ahvaz. The results also illustrated that based on defined threshold values (4, 8, 16, and 32 dS m-1) the indicator kriging methods have been able to show risk of soil salinity in the area. Based on this, most of the area is covered by soils with salinity higher than 4 dS m-1. Evaluation of final soil maps showed that the highest concentrations of salts are related to the western and southwestern parts of Ahvaz city. In contrast, the lowest amounts of salinity were found in Eastern and Northern parts of the city.


T. Rahimi, A. Moezzi, S. Hojati,
Volume 22, Issue 1 (Spring 2018)
Abstract

Biochar is a soil amendment that has a high capacity to adsorb heavy metals. The aim of this study was to identify the influence of cow manure and its biochar on nickel adsorption and to determine the best models to describe the kinetics of Ni retention. Accordingly, cow manure and its biochar were added to the soils at the levels of 0, 2 and 4%, and samples were incubated for 90 days. Soil samples were equilibrated with 100 mg L-1 Ni solutions for periods of 1 to 2880 min. Then, the concentration of nickel was measured. The Ni adsorption data were fitted to seven commonly used kinetic models. The results showed that cow manure and its biochar application in all times and levels increased nickel adsorption more than the control. There was also a significant difference (P<0.05) between cow manure and its biochar. Application of 4% biochar, as compared with the same level of cow manure, and the control, increased the Ni adsorption by 23 and 44%, respectively. Power function was the best fitted model describing the patterns of Ni adsorption, as evidenced by the relatively high values of R2 and the low values of SE. However, the Elovich function had some R2 similar to that of power function, but it could not be used as an adequate function to investigate the kinetics of nickel adsorption due to their high values of SE. The zero order, the first order, the second order, the third order, and parabolic diffusion equations were not well fitted to the Ni adsorption data.

P. Heidari, S. Hojati, N. Enayatzamir, A. Rayatpisheh,
Volume 24, Issue 3 (Fall 2020)
Abstract

The objective of this study was to investigate the impact of land use change (forest and rangelands to agriculture) on some micromorphological indices of soil quality in part of Rakat watershed, southwest of Iran. Accordingly, intact soil samples from 0-15 and 15-30 cm depths were collected from the above-mentioned land uses, and microstructure, type and abundance of voids, redoximorphic features, and humic substances were compared. The results showed that in the natural forest use, most of the voids are in the form of macropores, whereas after their conversion to agriculture, these types of voids have little development. In natural rangelands uses, voids were mainly oriented channels and of macropore type, but after switching from pasture to agriculture, they were mainly of vughy type. The results showed that natural forests (27.73%) and natural grasslands (22.28%) had more abundance of voids than forest to agriculture (19.01%) and grassland to agriculture (18.62%) land uses. In both natural forests and pasture land uses, various types of iron and manganese nodules, coatings, hypo-coatings, and quasi-coatings were significantly higher than agricultural land uses.

Z. Savari, S. Hojati, R. Taghizadeh Mehrjerdi,
Volume 25, Issue 3 (Fall 2021)
Abstract

Soil salinity and its development are the main problems that should be prevented by correct management methods. Recognition of saline districts and the preparation of salinity maps are the first steps in this way. Nowadays, the application of auxiliary data in digital soil mapping is increasing due to the current associated problems in the preparation of traditional maps. The objectives of this study were to map soil salinity by the Regression Kriging (RK) method,  to identify areas with high salinity, and to investigate the relationship between soil salinity and soil-forming factors in Khuzestan Province. For this purpose, 291 surface soil samples (0-10 cm) were randomly collected in April 2014. Auxiliary variables or soil-forming factors were included in the land parameters such as slope, watershed and wetness index, OLI and TIRS images of Landsat 8, and the category maps (soil, land use, and geological maps). Also, kriging approaches were used to compare the precision of different mapping methods. The results indicated that the Regression Kriging method has a higher precision compared with other methods so that the coefficient of determination, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) were estimated as 0.84, 0.41, and 6.21, respectively. The Decision Tree Regression method could also create a good relationship between soil salinity and auxiliary variables. The results showed that some auxiliary variables were more effective on the prediction of soil salinity including 2, 4, 5, and 7 bands of Landsat 8, Brightness Index, Wetness Index, Multiresolution index of Valley Bottom Flatness (MrVBF), Channel Network Base Level (CNBL), NDVI, SAVI and soil map. A Digital map of soil salinity was prepared by the obtained rules, and then it was assimilated with the map of error of variance to prepare the final soil salinity map. Accordingly, soil salinity was found to have an increasing trend from north to south in Khuzestan Province which indicates a salinity problem in the south of the Province. The main reasons for the high salinity in the south and southwestern parts of the area could be attributed to the high water table levels, differences in topography, capillary movement of salt to the soil surface, the difference in the type of land uses, and also groundwater quality and irrigation water which is altered by the frequent application of wastewaters and animal manures.

V. Moradinasab, S. Hojati, A. Landi, A. Faz Cano,
Volume 27, Issue 2 (Summer 2023)
Abstract

Parent material and topography are among the soil-forming factors that affect soil evolution by influencing different parameters. This study was conducted to compare the effect of marl and calcareous parent materials in different slope positions, including the summit, shoulder, foot-, and toe-slopes on soil clay mineralogy in the Karoon 3 Basin, east of Khuzestan Province. Four soil profiles in each of the two topo-sequences were dug. They were sampled based on their genetic horizons and some physical, chemical properties, and clay mineralogy were measured. The results showed that the type and abundance of clay minerals identified for both parent materials were more affected by topo-sequence position. The composition of minerals identified in the topo-sequence with marl parent materials included kaolinite, palygorskite, smectite, chlorite, mica, and quartz, and in the topo-sequence with calcareous parent materials, palygorskite, smectite, chlorite, mica minerals, and quartz, and most of the identified minerals were also observed in all positions in the C horizon. However, in marl parent materials kaolinite, and calcareous parent materials, smectite seems to have been formed pedogenically. The result of the association between Weaver and Beck indicated that most of the clay minerals are in the equilibrium of Palygorskite.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb