Search published articles


Showing 2 results for Isazadeh

M. Isazadeh, R. Arabzadeh, S. Darbandi,
Volume 20, Issue 77 (Fall 2016)
Abstract

Selection of optimum interpolation technique to estimate water quality parameters in unmeasured points plays an important role in managing the quality and quantity of water resources. The aim of this study is to evaluate the accuracy of interpolation methods using GIS and artificial neural network (ANNs) model. To this end, a series of qualitative parameters of samples from water taken from Dehgolan aquifer located in Kurdistan, Iran including CL, EC and PH were evaluated by any of the models. In this study, qualitative data from 56 observation wells with good dispersion in the whole plain was used. The data of 46 observation wells were used for calibration and the data of other 10 wells were used for verification of models. The results showed ANNs, IDW, and Kriging excellence and accuracy over other models in estimation of quality parameters CL, PH and EC. However the ANNs model is more accurate than other models. In case of lack of time and the need for acceptable accuracy and less risk in the estimation of qualitative parameters, the use of ANNs model is superior to other statistical models used.


M. Isazadeh, P. Mohammadi, Y. Dinpazhoh,
Volume 21, Issue 4 (Winter 2018)
Abstract

Statistical analysis and forecast discharge data play an important role in management and development of water systems. The most fundamental issues of statistical analysis and forecast discharge in Iran are lack of data in long term period and lack of stream flow data in gauging stations. Considering the issues mentioned in this study, we tried to estimate the daily data flow (runoff) of Santeh gauging station in Kordestan province using the nearby hydrometric and meteorological stations data. This estimation occurred based on the sixteen different input combinations, including data of daily flow of hydrometric stations Safakhaneh and Polanian and daily runoff in Santeh precipitation gauging station. In this research, the daily flow estimation of the Santeh station in each of the months of the year was evaluated for sixteen different combinations and artificial neural network models and multiple linear regressions. The performance of each model was evaluated with the indicators RMSE, CC, NS and t-student statistic. The results showed good performance of both models but the performance of the artificial neural network model was better than the regression model in estimation of the daily runoff in the most months of the year. Mean error of artificial neural network and multiple linear regression models was respectively estimated as 6.31 and 8.07 m3/s in the months of the year. It should be noted that the artificial neural network, for each sixteen combination used, had better result than the regression model.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb