Search published articles


Showing 34 results for Jalalian

Sayed-Farhad Mousavi, Ahmad Mohammad-Zadeh, Ahmad Jalalian, Hossein Samadi-Boroujeni,
Volume 1, Issue 2 (fall 1997)
Abstract

One of the most vital problems in the storage and utilization of surface waters for drinking, flood control, hydropower, and agricultural purposes is that of sedimentation in reservoirs and subsequent decline of dam lifetime. The useful lifetime of a dam is defined as the time necessary for approximately 80% of the volume of its initial capacity to be filled by sediments washed in by water. It is a function of the volume of the incoming sediments, specific weight of sediments, and reservoir trap efficiency. Trap efficiency depends on sediment characteristics, life, shape, and rule curves of the reservoir as well as on the capacity-inflow ratio. It is the purpose of the present study to calculate sediment trap efficiency of small dams and also to determine the relationship(s) among the effective parameters in the Chaharmahal and Bakhtiary region. For our purposes, 14 small earth dams (with heights of less than 15 m and capacities of about 1 MCM) were selected around Shahrekord and Borougen. Since no data were available on the erosion and sedimentation for these dams, the MPSIAC empirical model was used to estimate the incoming sediment to the dams' reservoirs. The model considers nine factors effective on erosion and sediment production in each watershed. These factors were analyzed for the watershed of each dam under study and the annual sediment yield was calculated. The amount of sediments retained in the reservoirs as a result of the working life of the dams was estimated by reservoir surveying. The trap efficiency was calculated for all the reservoirs under study. The results obtained revealed that the trap efficiencies for these small dams ranged from 10.4 to 68.9%. New curves were developed and suggested for the trap efficiency of small dams based on these results.
N. Tomanian, A. Jalalian, A. Zolanvar,
Volume 3, Issue 3 (fall 1999)
Abstract

Gypsiferous soils, as the most characteristic soil in arid and semi-arid regions, are widespread in Isfahan Province. The north-west region of Isfahan is a closed basin and is surrounded by geologic formations. This area is a part of Zayandehrood watershed. The origin of gypsum in this area was investigated in this study. Considering the geologic distribution of gypsum, twenty-two locations, suspected to have been affected by gypsum, were selected for sampling. Natural and artificial excavations were used to discover their relationships. To distinguish the differences between fresh and weathered shales, some fresh samples were taken from the depth of Shemshak formations (a lead mine).

Field observations showed that in Shemshak and Nayband formations, gypsic crystals were present within the layers of weathered shales, and pyrite was observed only in the mine shales. In weathered red conglomerates (Lower Cretaceous), considerable amounts of gypsum had accumulated. In the hydrothermal veins of Shemshak and Nayband formations, gypsic crystals were found in matrix or between rock layers. In some parts, the Qom formation (Evaporate sediments) contained plenty of gypsum.

From field observations and analytical data, such as mineralogy of untreated and floated rock powders, determination of residual sulfides in shales, and the examination of thin and polished sections of rocks, we conclude that the origin and main resources of gypsum in our study area are as follows:

1. Gypsum being released from Cretaceous limes particularly from red conglomerates

2. Oxidation of pyrite and any sulfidic minerals existing in shales

3. Gypsum being released from evaporates (Qom formation and Oligomiocenic Marls)

4. Gypsum formed through hydrothermal reactions during late Tertiary.


S. Ayoubi, A. Jalalian, J. Givi,
Volume 5, Issue 1 (spring 2001)
Abstract

Qualitative land suitability evaluation is based on the physical parameters affecting the yield agricultural crops. The socio-economic factors are not considered in such evaluations. This study was carried out to assess the qualitative land suitability for irrigated wheat, barley, maize and rice in northern Baraan. Five soil series and 25 different phases were first delineated. Land utilization types commonly practiced in the region with intermediate input levels were considered. Physical requirements of the crops were determined and ranked using the available information. FAO framework and the proposed method of Sys were used for the evaluation. Qualitative evaluation was carried out according to both simple limitation and parametric methods by comparing land and climatic characteristics with crop requirements.

 It was shown that in addition to climatic factors, soil salinity, drainage and some soil physical properties such as texture, gravel and lime are the most limiting factors. Land physical suitability for rice production was very low in most land units. The results from physical evaluation by parametric method were very close to those from the simple limitation approach.


H. Ramazanpour, A. Jalalian,
Volume 6, Issue 1 (spring 2002)
Abstract

Soil development and variability of soil properties on different landforms of Central Zagros were investigated. The study area covers two climatic regions including Shahrekord and Chellgerd with mean annual precipitations of 314 and 1224 mm, respectively. In Shahrekord area, the amount of Feo (amorphous and organic-bound iron) was higher in surface horizons, whereas, the Fed (crystalline, amorphous and organic-bound iron) was higher in the surface soil of well-drained pedons and concentrated in subsoils with high ground water. Smectite increases as chlorite and palygorskite decrease. This might be an indication of Fe-chlorite transformation as a result of the local effects of organic acids, alternate oxidation reduction and hydrolysis intensity of a wetter past climate. Presence of an argillic as well as petrocalcic horizon with sparitic calcite and spherulitic fabric show intermittent and periodic leaching and deposition in Shahrekord area. Furthermore, reduction in sand and gravel content of the soils from mountain toward plains was attributed to the dissolution of carbonates and deposition of alluvium. Lower pH, lower carbonate content and higher pedogenic Fe in surface horizons were prominent in Chellgerd area. Consequently, interstratified chlorite-smectite, decrease of Fe-chlorite in fine clay, increase of smectite, high CEC and absence of petrocalcic horizon show that weathering intensity was higher in Chellgerd as compared to Shahrekord area. Also, papules with concentric fabric, higher Fed-Feo, and redder hues in buried horizon suggest polygenetic soils. There was some evidence of climatic change in two areas however, time seems to have played an important role in Shahrekord, whereas topography must have been more effective in Chellgerdarea due to higher tectonic activities and unstable landforms which may confirm the formation of the buried horizon and paleosols.
M.a. Hajabbasi, A. Jalalian, J. Khajedin, H.r. Karimzadeh,
Volume 6, Issue 1 (spring 2002)
Abstract

Due to physiography and weak structure, the pasture soils in Boroojen are potentially degradable. Converting pastures to agricultural land accelerates the degradation processes. A study was conducted in 1999 to show the effects of almost 20 years of farming on originally pasture land on soil physical properties, fertility, and tilth index of pastures in Boroojen region in Chahar Mahal and Bakhtiari Province (central Zagrous). Soil texture, clay content, bulk density, organic matter, saturation moisture percent, cone index, plasticity index, mean weight diameter and aggregate size and distribution, nitrogen, phosphorus, and potassium were measured.

After 20 years of cultivation, bulk density increased about 20% while organic matter decreased by 30%. Cone index was lower in the undisturbed pasture but nitrogen and phosphorus contents were higher compared to the disturbed pasture. The undisturbed pasture contained more larger (> 1 mm) aggregates, while the disturbed pasture had more smaller aggregates. Sustainable use of natural resources will lead to their long term workability, while negligence of conservational practices including appropriate farming management practices will result in the destruction of these resources.


S. Ayoubi, J. Givi, A. Jalalian, A. M. Amini,
Volume 6, Issue 3 (fall 2002)
Abstract

In quantitative land suitability evaluation, economic aspects land evaluation such as impact of environmental physical factors on crop production and the amount of yield per surface unit are considered. The purpose of this research was to study quantitative land suitability of northern Baraan area located in eastern Isfahan. The study was a continuation of the previously accomplished qualitative land suitability evaluation of the area. The economic studies include economic data collection, matching inputs and outputs and gross margins analysis. Radiation-thermal production potential of the crops was calculated based on plant physiology and temperature (FAO model), which was 10.45, 10.11, 13.64 and 11.93 ton/ha for wheat, barley, maize and rice, respectively. Radiation-thermal production potential, observed and marginal yields and the results of the qualitative land evaluation were used to perform quantitative land evalution and to determine the corresponding suitability classes. The predicted yield in different land units varies between 1.64 and 9.17 ton/ha for wheat, 1.81 and 9 ton/ha for barley, 2.06 and 9.42 ton/ha for maize and 2.35 and 7.14 ton/ha for rice. Presence of significant statistical correlation between the observed and the predicted yield values reveals the validity of the evaluation methods used. The results from quantitative land evaluation show that most of the land units are slightly to moderately suitable for wheat, barley, maize and rice, while a few are not. The best land utilization type in each land unit can be selected through a combined consideration of quantitative land evaluation results, benefitability of each land unit and impact of the land use on the soil. Rice cultivation is not recommended in the study area, because of its adverse effect on soil physical properties and soil drainage.
H. R. Karimzadeh, A. Jalalian,
Volume 6, Issue 3 (fall 2002)
Abstract

For the study of field wind erosion and the design and evaluation of wind erosion control techniques, detailed observations of soil particle transport and vertical destribution of eroded soil particles are needed. The objectives of this study were: 1) To describe one device for soil transport particle measurement, i. e. the BSNE sediment catcher and 2) To assess vertical distribution of wind–eroded sediment with height in eastern Isfahan. The BSNE sediment catcher is a wind erosion sampler that traps eroded material at seven heights of 0.24, 0.60, 1.08, 2.00, 3.00, and 4.00 m above the soil surface. Each trap consists of a steel container with an inlet and outlet, mounted on a wind vane that rotates about a central pole. Before using the sampler in the field, it was tested and calibrated in the wind tunnel. The results showed that the average trapping efficiency with speeds ranging from 5.2 to 7.2 m sec-1 for 4 different wind–eroded sediments was 0.44 to 0.68. However the trapping efficiency depended on wind speed, particle size distribution, particle density and type of sediment. The sampler had the lowest efficiency for particles < 44 μm. A BSNE sediment catcher was installed in Babaii Air Base. After a sampling period, the sediment in each trap was collected and weighed. The trapped materials were a mixture of saltation and suspension particles. Vertical distribution of wind–eroded sediment showed that the amount of soil collected decreased with increased height and the percentage of fine particles (<63μm) increased with height. The amount of trapped materials for each cm2 frontal intake with increased height were 12.00, 3.42, 1.44, 1.56, 0.75, 0.21, and 0.39 g cm-2, respectively, for the one sampling period.
A. Ahmadi Iikhchi, M. A. Hajabbassi, A. Jalalian,
Volume 6, Issue 4 (winter 2003)
Abstract

Cultivating rangeland to be shifted to crop land farms commonly causes soil degradation and runoff generation. This study was conducted to evaluate the cultivation effects on runoff generation and soil quality. The experiment was performed in a rangeland and a 40-year cultivated land located at two slope positions (back slope and shoulder) of a hillside in Dorahan, Chaharmahal & Bakhtiari Province. A 60±5 mm.hr-1 rainfall intensity was simulated by a rainulator. Organic matter, mean weighted diameter, saturated hydraulic conductivity, collected runoff and sediments were measured. The differences between the means were tested using T-test. Results showed 35, 53 and 8% increases in the organic matter, mean weighted diameter, and saturated hydraulic conductivity in back slope, respectively. The increases in these parameters in shoulder position were 39, 60 and 33%. The values for runoff and sediments in back slope were 3 and 8 times greater than in other similar positions while the values in the shoulder position were 11 and 55 times greater than the same values in other positions.
S. Ayoobi, A. Jalalian, M. Karimian Eghbal,
Volume 7, Issue 3 (fall 2003)
Abstract

Investigation of paleosols plays a great role in paleoecological and paleoclimatological studies. They are also important in soil survey and planning, as they exhibit characteristics different from younger soils. Paleosols are those soils which formed under conditions different from present ones, and are either buried within sedimentary sequences or those which lie on persisting surfaces. Although such soils are widespread in central Iran and Zagros Zone, they have not been studied adequately. Paleosols are identified by different parameters such as morphological, physical, chemical, mineralogical, and micromorphological characteristics. In this study, morphological, physical, and chemical properties of three paleosols from Isfahan and Chaharmahal & Bakhtiary provinces were investigated. The profiles were on different landforms including alluvial fan, dissected old plain, and old lagoonal deposits. Soil profile in Segzi site, on old lagoonal deposits, had a very dark and thick layer at a depth of 45-60 cm containing some macrofossil shells. This shows that this area was covered by brackish water during the early Holocene. In Sepahanshahr profile, presence of strong clay coating and high concentrations of CaCO3 indicates a wetter environment in the past than the present conditions with a precipitation of only 100 mm. In Emam-Gheis profile, a buried paleosol was identified with strong clay coating and free CaCO3 horizons that shows more humid conditions. Evidences obtained from the three paleosols studied indicate that effective moisture in central Iran and Zagros regions during Late Pleistocene had been higher than its present levels.
F. Nourbakhsh, A. Jalalian, H. Shariatmadari,
Volume 7, Issue 3 (fall 2003)
Abstract

Cation exchange capacity (CEC) is one of the most important chemical characteristics which influences soil quality from different aspects. At the same time, CEC is an input parameter of many computer models being applied in soil science and agriculture. Methods of CEC determination are always time-consuming and laborious. Therefore, developing a model for CEC estimation from other soil properties is essential. The objective of this study was to understand the associations between CEC (as a dependent variable) and sand, silt, clay, organic matter and pH (as independent variables). In this study 464 soil samples from A, B, and C horizons of different soils were used. Results revealed that CEC is negatively correlated with sand (r=-0.389***) and is positively correlated with organic matter (r=0.772***), clay (r= 0.391***) and silt (r= 0.233***). No significant correlation was observed between CEC and pH. Stepwise regression analysis showed that both organic matter and clay enter the model and that coefficients of determination (r2) for the multiple models are higher than those of simple linear correlations. Other parameters could not increase the r2 considerably. Correlation analysis on data from A, B, and C horizons revealed that the CEC of organic matter in different horizons are not the same. Separation of Aridisols could not increase the r2 of the model and the accuracy of the estimations. Correlation studies in acid soils showed that the contribution of organic matter in CEC is much higher than that of clays.
H. R. Karimzadeh, A. Jalalian, H. Khademi,
Volume 8, Issue 1 (spring 2004)
Abstract

Clay minerals deserve special attention as they play a crucial role in many soils. The clay mineralogy of five gypsiferous soils from different landforms in eastern Isfahan was investigated using X-ray diffraction (XRD). In addition, soil aggregates and wind-deposited sediments were examined by scanning electron microscope (SEM) and analyzed by energy dispersive X-ray analyzer (EDX). The results indicate the presence of palygorskite, mica, kaolinite, chlorite, and quartz with a trace amount of vermiculite and randomly interstratified layers in all soils. Smectite occurs in soils of both the piedmont plain and old river terrace, but not in the alluvial fan soils. Mica, chlorite, quartz, and kaolinite were probably inherited from the parent material. Palygorskite seems to increase with depth in the alluvial fan, whereas, in the old terrace soils, this clay mineral decreases with depth. Palygorskite present in alluvial fan soil appears to have been formed authigenically when the basin was covered with shallow hyper-saline lagoons toward the end of the Tertiary. Palygorskite in the old terrace seems to be mostly detrital and an eolian origin of palygorskite is likely because a large amount of palygorskite is present in upper soil horizons. A higher proportion of smectite in deep soils of the old terrace, as compared with palygorskite, suggests the possibility of authigenic formation of smectite from palygorskite. .
N. Zahedifard, S. J. Khajeddin, A. Jalalian,
Volume 8, Issue 2 (summer 2004)
Abstract

Satellite data use is finding global applications because they provide repeated cover, broad information, high electromagnetic spectral resolution, and software-hardware compatibilities. This study aims to evaluate of the Landsat TM data capabilities in land-use mapping of Bazoft River basin (Chahar Mahale Bakhtiary Province). Six spectral bands of the Landsate TM were employed to produce land-use map of the Region. The date of image acquisition was May 5th, 1998. Performance of the geometric correction completed with RMSE= 1.008 pixels. Various image enhacement methods (e.g. FCC, filtering and Vegetation Indices) were used to study the different land-covers. Field investigations were carried out using a GPS, 1:50000 scale topographic map and false color composites images. Heterogeneous land-use units were studied in 62 sample sites estimating percentage of vegetation cover. A regression analysis was performed between percentage vegetation covers and vegetation indices values of NDVI, RVI, SAVI, DVI, TSAVI1, NRVI and MSAVI2. Results show that NDVI, SAVI, TSAVI1, NRVI and MSAVI2 have high correlation coefficients. But RVI, DVI and PVI have low correlation coefficients. The resulting values of vegetation cover were density sliced to produce the land-cover map. After supervised classifications and density slicing of Vegetation Indices, classifacation accuracy was assessed and, finally, land-use map of the study area was produced with Hybrid classification method. Supervised classification with maximum likelihood method was the best technique for land-use mapping in the study area the total Kappa index was %87. In general, detection of some land-use classes through single date TM data is not feasible, these include: scattered forest trees with cultivated understory, annual grasses, and fallow lands. Also TM digital data are incapable of distinguishing small and separated rural constructions or soil-covered routes.
M. Hoodaji, A. Jalalian,
Volume 8, Issue 3 (fall 2004)
Abstract

Soil pollution and accumulation of heavy metals in crops in industrial areas are the most important bioenvironmental problems that threaten the life of plants, animals and humans. The objective of this study was to determine Ni, Mn and Cd distribution in soil and crops shoots around the Mobarakeh Steel Plant. In this study, we separated 50 zones based on soil utility maps taking into consideration the dominant wind direction (south-western to north- eastern). In each zone, soil was sampled at 0-5, 5-10, 10-20 and 20-40 cm depths (200 samples) and DTPA-extractable concentrations of Ni, Mn and Cd were determined in soil samples. Also 36 plant samples from shoots of 18 main crops were collected in the region and the concentrations of heavy metals were determined in crop samples. Results showed that maximum DTPA-extractable concentrations of Ni and Mn were in the northeast of the region in the 0-5 cm layer (4.2 and 312 mg/kg.soil, respectively) and decreased in 5-10,10-20 and 20-40 cm layers (2.7,2.7,2.1 and 200,212,146 mg/kg.soil, respectively). The concentrations of Ni and Cd in shoots of crops were undetectable with atomic absorption method. The concentration of Mn in rice shoots was 716.6 mg/kg.dry.m. It was higher than USEPA standards (15-100 mg/kg.dry.m). .
S. Ayoubi, M. Karimian Eghbal, A. Jalalian,
Volume 10, Issue 1 (spring 2006)
Abstract

Paleosols include soils formed under climatic condition different from the present. Although such soils are widespread in central Iran region, adequate investigations of them are yet to be carried out. Micromorphology is one of the most important tools in plaeoclimatological studies. This investigation was carried out to study microscopic features of two paleosols from Isfahan province to reconstruct the paleoclimatic condition during the Quaternary. The results of this study indicate that strong clay coatings are presented in Sepahanshahr paleosol, indicating moisture regime in the past. This paleosol is polygenetic due to calcite and gypsum accumulation during drier periods compared to clay illuviation condition. Micromorphological features in Segzi paleosol indicate that this area has experienced a swampy environment during the younger Dryas. The overall results from this study indicate that climatic oscillation evidences during Quaternary have been preserved in paleosols from Isfahan region.
H. Majdi, M. Karimian- Eghbal, H. R. Karimzadeh, A. Jalalian,
Volume 10, Issue 3 (fall 2006)
Abstract

Stabilizng sand dunes has been one of the main challenges in the arid regions. So far, different kinds of mulches have been used extensively for sand dune stabilization. This study was carried out to determine the optimum composition, concentration and thickness of clay mulch for sand dune stabilization. For this purpose two soil samples from clay flats of a playa with different amount of salinity from Ardestan area were used to make clay mulches. A sand dune sample was selected as bed for applying the mulch. To select the right ingredient and treatments, clay samples were mixed with sand and different amount of water, and sprayed on sand dune bed. In addition, wheat straw was added to some mixture to test its effect on stability of the mulch. Treatments with lowest crack and highest penetration of mulch in sand bed were selected for the experiment in this study. Mulch treatments contained (1): 250g sand dune + 250g clay + 25g straw (2) 250g clay + 25g straw (3) 250g sand + 250g clay (4) 250g clay (5) 125g sand + 125g clay and (6) 125g clay. All treatments were mixed with 500ml water. The experimental design was a CRD with a 6(mulch) * 2(thickness)* 2 EC factorial method with 3 replications. The results showed that clay mulch were resistant to wind erosion, but erosion took place when they had been bombarded with sandblast. The mulches with straw showed the highest resistance to erosion as compared to other treatments. With increasing the number of mulch layers, resistant to erosion also increased. The added stability of mulch was due to the increase in mulch thickness and also increases in clay and silt content. The overall result of this study shows that the mulch with two layers and higher mixture of clay and sands was the best treatment for the stabilization of sand dunes.
A. Jalalian, J. Givi, M. Bazgir, Sh. Ayoubi,
Volume 10, Issue 4 (winter 2007)
Abstract

In Iran, the development of cultivated areas becomes gradually impossible due to ever-increasing population growth and urban area development. Therefore, it is very important to use the existing cultivated lands more efficiently. Land suitability evaluation makes the sustainable use of the lands feasible. The objective of this study was qualitative, quantitative and economic assessment of land suitability in Talandahst area for rainfed wheat, barley and chickpea. Talandasht plain with a surface area of 4500 ha is located southwest of Kermanshah city. The climate is semi-arid with cold winter and moderate summer. The successive stages of this research included soil survey in the field, soil analysis, qualitative and quantitative and economic evaluations of land suitability. In qualitative evaluation of land, climatic, topographic and soil suitability classes were determined according to the degree of the matching. Limitation and parametric methods were used in qualitative evaluation. Quantitative and economic evaluations made based on the observed yield and gross benefit, respectively. Based on qualitative evaluation, the studied area is marginally suitable for rainfed farming of wheat, barley and chickpea. This is due to water deficiency occurring during some stages of the growing cycle. The solution for this problem is supplementary irrigation. In addition to climate limitation, there are also topographic and soil restriction for the growth of the studied crops. On the basis of observed yield, the land units are moderately to highly suitable for rainfed wheat and barley production. Among the three named crops, the most and least profitable ones are chickpea and barley, respectively, and wheat ranks between them.
M. Yousefifard, A. Jalalian, H. Khademi,
Volume 11, Issue 40 (summer 2007)
Abstract

Improper use of natural resources, especially soil, causes its degradation and severe soil erosion. Water erosion is an important factor causing soil degradation. Land use change of pasture would result in severe soil erosion mainly due to the reduction of vegetation cover and also surface soil disturbance. The objectives of this study were to estimate the amount of sediment, runoff and nutrient loss in four different land uses including a pasture with good vegetation cover (> 20%), a pasture with poor vegetation cover (< 10%), a currently being used dryland farm and a degraded dryland farm which is not used. Soil samples were taken from the depth of 0–10 cm in a completely randomized design with four replications. A rainfall simulator was run for two hours to estimate the amount of sediment, runoff and nutrient loss. Organic matter, total N, available P and distribution of particles size in soil and sediment were measured. The results showed that a very high degradation has occurred in the area mostly due to water erosion created as a result of overgrazing in pasture, susceptibility of geological formations and more importantly, the change of land use pasture to inefficient dryland farming. Maximum and minimum runoff was observed in the abandoned dry landfarm and pasture with good vegetation cover, respectively. Maximum sediment content was observed in dryland farm. Sediment content in dryland farm, abandoned dry landfarm and pasture with poor vegetation cover were 54.5, 21 and 10.4 times more than that in the pasture with good vegetation cover, respectively. Enrichment ratio (ER) of soil particles in sediment was highest for fine silt (2-5µm), followed by clay. A minimum of ER was obtained for sand fraction. Percentages of organic matter, total N and available P in sediment were higher in the first hour as compared to the second one. This is mainly due to the fact that fine particles are removed at the beginnings of the rainfall event. Total removal of these chemical factors was highest in dryland, intermediate in pasture with poor vegetation cover and abandoned dryland and lowest in pasture with good vegetation cover. In general, cultivation and disturbance of the pasture in the area land have caused a great decrease in soil quality and made the surface very sensitive to erosion.
F. Kiani, A. Jalalian, A. Pashaee, H. Khademi,
Volume 11, Issue 41 (fall 2007)
Abstract

To investigate the degree of forest degradation and the effect of land use change on selected soil quality attributes in loess-derived landforms, samples were taken from different land uses including forest, rangeland, degradated rangeland and farmland in Pasang watershed located in the Galikesh area of Golestan province (37°16'N, 55°30'E). The annual average temperature and mean precipitation of study area were 15°C and 730 mm respectively. Organic matter, pH, EC, CaCO3 and nutrients (N, P, K) as chemical indicators, hydraulic conductivity, bulk density and porosity as physical indicators and soil respiration as biological indicator were measured. The results showed that the amount of organic matter decreased three percent when it was turned from forest to farmland, and increased two percent from farmland to rangeland. The amount of CaCO3 in surface layer of deforested area was more than in the forest soils. The amount of soil N in forest and soil P and K in rangeland were higher than in other land uses. Bulk density and porosity in forest and MWD in rangeland were higher than in other land uses because of the decrease in organic matter due to farming activities. Soil respiration in forest was highest as compared to in other land uses. Difference of enzymes activities (L-asparaginase and Dehydrogenase) compared to microbial respiration indicates that enzymes activity is related to specific biological processes while soil microbial respiration basically depends on the general activity of soil microbial population. It could be concluded that amount of organic matter, soil N, bulk density, porosity, MWD, soil respiration and enzymes activities are suitable indicators for soil quality evaluation in this area.
A. Jalalian, M. Amirpour Robat, B. Ghorbani, S.h. Ayoubi,
Volume 11, Issue 42 (winter 2008)
Abstract

  Soil erosion is one of the most threatening issues for crop production and environmental qualities, especially for soil and water resources. Appropriate knowledge about total soil loss and runoff is valuable in order to perform soil and water conservation practices in watersheds. EUROSEM, "a single event, dynamic and distributed model," was developed to simulate soil loss, sediment transportation and deposition by rill and interrill processes. This study was conducted to evaluate EUROSEM model in order to simulate soil loss and runoff in Sulijan sub-basin, which covered 20 ha, from Charmah-Bakhtari province. The sub-basin was divided in to 19 homogeneous elements using topographic, land use, plant cover, slope and channel properties throughout it. Soil, plant cover, land surface and climate characteristics were measured and evaluated by field observations and laboratory measurements. Actual soil loss and runoff for studied events were determined by direct measurement in the field. After sensitivity analysis, calibration and validation steps were carried out to simulate runoff and soil loss. The results of sensitivity analysis showed that the EUROSEM model for predicting runoff was more sensitive to hydraulic conductivity, capillary drive and initial soil moisture. On the other hand the model for predicting soil loss was more sensitive to Manning's coefficient and soil cohesion. The results showed that the EUROSEM model was able to simulate well the total runoff, peak of runoff discharge, total soil loss and time for the peak of soil loss discharge. But that could not simulate well the peak of soil loss discharge and time for the peak of runoff. Although it seems that EUROSEM is able to predict soil loss and runoff partially well in individual events, it is necessary to evaluate the efficiency of the models for different basins with varieties of soil, plant cover and climatic properties.


A. Jalalian, M. Rostaminia, S.h. Ayoubi, A.m. Amini,
Volume 11, Issue 42 (winter 2008)
Abstract

  Extension of cultivation areas becomes gradually impossible due to ever-increasing population growth and urban area development in Iran. Therefore, it is very important to use the existing cultivated lands more efficiently. Land suitability evaluation makes the sustainable use of the lands feasible. The objective of this study was qualitative, quantitative and economic suitability evaluation of irrigated croplands for wheat, maize and sesame in Mehran plain, Ilam Province. Soil survey in the field, laboratory analysis of the soil samples, qualitative, quantitative and economic evaluation were different successive stages of this research. In qualitative evaluation, climatic, topographic and soil suitability classes were determined according to the degree of the matching with plant requirements, by parametric (square root) method. Quantitative and economic evaluations were done based on observed, potential and marginal yield analysis. Results of the qualitative land evaluation showed that most of the land units were classified moderately suitable for given crops because of soil limitations. Qualitatively, most of the land units were classified in the same classes as, or in lower classes than quantitative suitability classes for wheat and maize production, due to high management level at the farms. Whereas quantitative classes of sesame were determined lower than qualitative classes induced by low management level for this crop. Economic land suitability classification showed that the wheat production was the most economic land utilization type. Results of the economic assessment suggested that the cultivation of wheat in rotation with sesame would produce the most income for different units and could be increased in future using improvement in management level in the study area for sesame cultivation.



Page 1 from 2    
First
Previous
1
 

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb