Search published articles


Showing 3 results for Janatrostami

S. Janatrostami, H. Mahmoudpour,
Volume 23, Issue 4 (winter 2020)
Abstract

One of the main sources of greenhouse gas (GHG) emissions is the use of energy for groundwater pumping. Reducing energy consumption is very important to achieve the environmental sustainability and decrease the climate change impacts. In this paper, the amount of greenhouse gas emissions from groundwater pumping in the Guilan’s aquifers was investigated. Firstly, groundwater depletion and the types of pumps for water pumping were examined in the current condition; then, the values of consumed energy, GHG emissions and climate change indicator of the current condition were estimated. The primary investigations showed that 55 percent of wells in the studied region had a diesel engine pump, while 51.3 percent of the required energy for groundwater pumping was supplied by electric pump. Calculated total GHG emissions and the value of climate change indicator in the current condition were equal to 8.98 and 7.59 Milion kg CO2 eq , respectively. In order to achieve environmental sustainability and energy security, scenarios of replacing electric pumps and applying solar energy were examined. The results of the scenarios showed that diesel fuel wells had no significant effect on the reduction of greenhouse gas emissions, but the use of solar energy reduced them. GHG emissions, in comparison with the base scenarios, were decreased by 44.4% in June, July and August, respectively, by applying the scenario of using the solar pump in agricultural section. Therefore, it is preferred to apply policies in future planning to use renewable energies such as solar energy instead of diesel and electricity energy.

H. Mahmoudpour, S. Janatrostami, A. Ashrafzadeh,
Volume 24, Issue 3 (Fall 2020)
Abstract

Given the fact that the DRASTIC index is ineffective in addressing the saltwater uprising issue in coastal plains, in the present study, three factors including land use, distance to shoreline, and differences between groundwater and sea level were added to the DRASTIC index. The proposed modification to DRASTIC was validated using the measured electrical conductivity (EC) data gathered from groundwater monitoring wells throughout the Talesh Plain. The results showed that the coefficient of correlation between the map of EC over the region and the modified DRASTIC was 0.52, while for the original DRASTIC, the coefficient was 0.45, thereby implying a stronger relationship between EC and the modified DRASTIC in the Talesh Plain. Sensitivity analysis also showed that DRASTIC and the modified DRASTIC were the most sensitive to, respectively, depth to groundwater (D) and land use (Lu). According to the single-parameter sensitivity analysis results, depth to water table and net recharge were the most effective parameters in DRASTIC,  whereas the modified DRASTIC was the most sensitive to land use and depth to groundwater. It could be concluded that modifying the DRASTIC index would result in decreasing the area of very high and high vulnerable classes, and the area classified as low and moderate vulnerable could be increased.

S. Janatrostami, A. Salahi,
Volume 25, Issue 2 (Summer 2021)
Abstract

Water allocation needs to adhere to the principles of efficiency, equity, and sustainability, but, equity usually is less considered. Foumanat irrigation area with five command areas is one of the three areas of Sefidroud irrigation and drainage network that more than 90% of it is covered by paddy fields. Since water plays a key role in paddy fields, the lack of uniform distribution of water resources throughout the irrigation area during the rice cultivation period causes irrigation water scarcity and severe damage to some irrigation areas. In this study, the equity of groundwater withdrawal and the received surface water from Sefidroud irrigation and drainage canals according to the shared water resources among Foumanat’s command areas were evaluated using the Gini coefficient. Therefore, a water allocation optimization model was developed to maximize the equity in the allocation of groundwater and surface water of canals according to the minimum current economic benefit in the command areas. The results showed that in optimum conditions, the equity of groundwater and surface water resources allocation was increased by 46.3% and 43.7%, respectively. The evaluation of the optimal allocation of available water resources also showed that the amounts of groundwater withdrawal and the received surface water from canals are distributed equally among command areas.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb