Search published articles


Showing 4 results for K. Razmjoo

M. Talebi Bedaf, B. E. Sayed-Tabatabaei, K. Razmjoo, B. Shiran,
Volume 10, Issue 2 (summer 2006)
Abstract

Identification of grass species seems difficult due to the morphological similarities. However, selecting desirable parental genotypes of the crosses based on the genetic distances is considered as the most critical step in a breeding program. The aim of this study was to characterize grass species using AFLP techniques. Five species with five cultivars from each were selected and studied using AFLP reactions performed by PstI and MseI restriction enzymes. The obtained data was analyzed using NT SYS-pc Ver. 2.02 software and Jaccard’s method. Ten primer combinations amplified 1170 bands, all of which were polymorphic between cultivars and species. The maximum band (168) and the minimum number of band (81) were produced by P-AAG & M-CAG and P-ACT & M-CGC, respectively. The results also distinguished 5 species in 40% of genetic distances. Some of the markers were special to some special species that can be used in the identification of that species. Additionally, the results showed that AFLP techniques robust and efficient tools for the identification of genetic relationships of different genotypes within species. High levels of bands and polymorphism make AFLP one of the most powerful markers in the determination and classification of species and different cultivars of grass.
N. Etemadi, K. Razmjoo, A. Khalighi, Z. Zamani, H. Lesani,
Volume 10, Issue 4 (winter 2007)
Abstract

Turfgrasses are the most important cover plants in the world. Quality evaluation of the turfgrasses is usually done by experienced evaluators using color texture, density and uniformity. The results obtained by different evaluators may be different, leading to researcher’s concern. Therefore, some quantitative methods have been used for increasing the aquracy and stability in results. In this study, three color evaluating methods including, spectrophotometery (chlorophyll content), chlorophyllmeter SPAD-502, and evaluator person, as well as leaf texture by evaluator person compared with leaf width were used for 75 populations of Cynodon dactylon L. and Tifdwarf cultivar. The results showed that there were significant differences between populations for the color and leaf texture. There were no significant corelations between measuring color by using specterophotometery, chlorophyllmeter-502, and evaluator. Use of SPAD-502 instrument for measuring leaf color of bermudagrass is not recommended due to small leaf width of this species. However, there was significant corelation between visual evaluation and leaf width in measuring leaf texture. Therefore, when no experienced evaluator is present, leaf width maybe used for measuring leaf texture.
Z. Adavi, M. Mobli, K. Razmjoo, E. Landi,
Volume 10, Issue 4 (winter 2007)
Abstract

In order to study the effects of salinity of irrigation water on the growth and quality of 10 bermudagrass cultivars under saline soil, a factorial plot experiment using a complete randomized block design with three replications was carried out at College of Agriculture, Isfahan University of Technology in 2002-2003. Ten cultivars under five levels of irrigation water salinity (3.30, 6.93, 10.2, 14.8, 17.8 dsm-1) were studied. During experiment, visual appearance of color (1 to 9, best 9), and leaf area, shoot and root dry weights and length and number of stolones were measured. Results showed that salinity of irrigation water affected color of different cultivars, such that with increase in the level of salinity, color decreased. Cultivars showed better color in August, but lower color in January. Annual mean indexes showed that ISF2 and Tifdwarf had highest and lowest color, respectively. Also, with increase in salinity levels, leaf area, foliage dry weight, length and number of stolones reduced. With increase in salinity of irrigation water from 3.30 to 10.2 dsm-1 root dry weight increased, but reduced in higher salinity levels. Due to significant interaction effects between salinity and cultivars for most traits, the responses of cultivars were different. Large differences observed between cultivars for most of traits indicated high genetic variation among the studied bermudagrass cultivars. Under high level of salinity conditions, JP2 and Tifway for foliage dry weight, 3200W18-4 and ISF2 for root dry weight, and cultivars Midlawn and 3200W18-4 for leaf area, were recognized as more tolerant than others.
Sh. Sarikhani, K. Razmjoo,
Volume 10, Issue 4 (winter 2007)
Abstract

In order to evaluate the effect of row and plant spacings on the yield and yield components of three cultivars of forge sorghum, a field experiment was conducted in Isfahan University of Technology, Lavark, during spring, 2001. Experimental design was a split-factorial with three replications. Main plots consisted of three row spacings (45, 60, 75 cm) and subplots were combinations of three cultivars of forage sorghum(cultivars KFS1, IS722, IS3313) and three plant spacings (4, 6 and 8 cm). The results showed that the number of young and adult tillers, the number of leaf per square meter and shoot and leaf dry weight were influenced by row and plant spacings and significantly decreased with increasing row and plant spacings. Forage yield also decreased with increasing row and plant spacing. The highest dry forage yield was produced by 45 cm row spacing and 4 cm plant spacing. The KFS1 cultivar produced more forage yield than IS722 cultivar. The number of young and adult tiller per square meter and the number of leaf per square meter were significantly (p< 0.01) influenced by the interaction between row spacing and cultivar, row spacing and plant spacing and plant spacing and cultivar in two cuts. Shoot and leaf dry weight (kg/m2) was also significant (p< 0.01) influenced by the interaction between row spacing and cultivar, and between plant spacing and cultivar in the second cut. The density of 45 cm row spacing and 4 cm plant spacing produced the maximum forage yield.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb