M Ebrahimi, S.m Khayam Nekoei, S Kadkhodaei,
Volume 12, Issue 46 (fall 2009)
Abstract
Somatic embryogenesis is affected by several factors. In this research project, we studied the effect of explant size, wounding and desiccation treatments on somatic embryogenesis and their conversion into plantlet among three genotypes of soybean. The explants were sampled from immature embryos of soybean in three different sizes (3, 5 & 7 mm) with wounding treatment on half of each, and then were cultured on the somatic embryogenesis medium. In order to determine desiccation effect on conversion amount of embryos into plantlets, the produced embryos were affected by three levels of desiccation treatments (2, 4 & 6 days). The increase ratio of callus mean weight, percentage of embryogenic calli, embryo number per explant and percentage of embryo conversion to plantlet were used for treatment evaluation. Variance analysis of the data showed significant differences (P<0.01) between treatments regarding the variables. The results indicated that BP was a superior genotype with embryogenic capability (24.19 %) and the best explant size for somatic embryogenesis was immature embryo with 3 mm length. The six day desiccation treatment caused highest percentage of embryo conversion into plantlet (74.7 %). Wounding increased callus production on explants and number of embryos per explant (20.28), but it did not show any significant effect on percentage of embryogenic calli. Germinated somatic embryos were transferred to pots containing peat-moss. Somatic embryogenesis is an efficient method for the plant regeneration and genetic transformation. However, this method still offers low percentages of plant regeneration, and is perhaps related to the maturation process and high morphological abnormalities of the matured embryos. This study aimed to find some solutions for soybean somatic embryogenesis problems.