Search published articles


Showing 10 results for Kafi

A. Nezami, A. Bagheri, H. Rahimian, M. Kafi, M. Nasiri Mahalati,
Volume 10, Issue 4 (winter 2007)
Abstract

The present experiment was aimed to evaluate the freezing tolerance of two cold tolerant (MCC426 and MCC252) and a cold susceptible (MCC505) chickpea genotypes. The study was carried out in a split-plot factorial design with three replications. Factorial arrangement of genotype and acclimation (acclimation and non acclimation) were imposed as main plot and temperatures (0, -4, -8, -12, 16, -20ºC) as subplot. The effect of freezing temperature (FT) on plant survival was significantly different among genotypes (p<0.05). According to the average effects of acclimation and FT, the plant survival in MCC426 and MCC252 was 40% and 31% respectively more than in MCC505. Lethal temperature for 50% response (LT50) and temperature resulting in 50% lower dry matter (DMT50) in MCC426 were –10.8ºC and –8.4ºC, respectively and were lower than the other genotypes. Acclimation increased the freezing tolerance such that MCC426 tolerated up to –12ºC without any mortality, however, at this temperature, plant mortality rates in MCC252 and MCC505 were 25.7% and 67.7%, respectively. Plant regrowth was affected by the intensity of FT, such that plant dry weight (PDW) and stem height (SH) in –12ºC decreased about 63% and 50%, respectively, compared with non - frozen control plants. The most freezing damage was observed in MCC505, -12ºC treatment caused 90% decreases in PDW and SH, but at this temperature, PDW and SH in MCC425 decreased 55% and 49% and in MCC252, the reduction was about 60%and 54%, respectively. It seems that the use of controlled experiments would contribute to the evaluation of freezing tolerance and screening programs in chickpea germplasm for the estimation of LT50 and DMT50 .
M.j. Seghatoleslami, M. Kafi, I. Majidi, G. Nour-Mohammadi, F. Darvish,
Volume 11, Issue 1 (spring 2007)
Abstract

In order to examine the responses of proso millet (Panicum miliaceum) to drought stress at different growth stages, four breeded genotypes and a local one of proso millet were selected and planted in a split-plot design with five irrigation treatments and three replications.This experiment was conducted in two locations, Birjand and Sarbisheh. Irrigation treatments included well - watered, drought stress at vegetative stage, ear emergence stage, seed filling stage and vegetative and seed filling stages which were considered as main- plots. The first five mentioned genotypes were considered as sub-plots. Drought stress. caused a great reduction in grain yield and WUE at ear emergence stage. This reduction represented itself in the number of seed per ear and the weight of seeds, but it didn’t have any effects on the number of ear. At ear emergence stage, the drought stress increased the floret death and loss of weight of seeds which resulted in the reduction in the harvest index of both ear per plant and seed per plant. Comparison of genotypes indicated that since K-C-M.4 had a greater number of ears and K-C-M.9 had heavier seeds that had higher grain yield. These two genotypes had the highest WUE and their harvest indices were relatively higher. Due to the salinity of water and infertility of soil in Birjand, the grain yield was lower compared with Sarbisheh. In summary, it can be said that genotype K-C-M.4 proved to be more suitable for both areas.
M. Rahimi, B. Rabiei, H. Samizadeh Lahiji, A. Kafi Ghasemi,
Volume 12, Issue 43 (spring 2008)
Abstract

Six rice cultivars were crossed in half diallel design to evaluate their GCA and SCA in 2005. In the following year, parents and their progenies were grown in a randomized complete block design with three replications, and 10 traits were measured. The analysis of variance showed significant differences (p≤0.01) between cultivars. Furthermore, general combining ability (GCA) and specific combining ability (SCA) for parents and hybrids were significant. Therefore, additive and non-additive gene effects on controlling traits were demonstrated. According to the analysis based on the second and fourth Griffing methods, additive gene effects were more than non-additive gene effects on controlling growth period, plant height, panicle length, number of panicles/plant and brown rice length, while other studied traits were more controlled by non-additive gene effects. Comparison of the second and fourth Griffing methods showed that the proportions of additive and non-additive variances in two methods were different. Moreover, GCA and SCA resulting from the two methods for several traits such as vegetative and productive growth period, plant height, number of filled grains/panicle and grain yield were significant. Therefore, it could be concluded that using parental generations in the second Griffing method may cause biased estimate of the GCA and SCA variances. Thus, using the fourth Griffing method is more suitable than the other methods in providing time, cost and facilities, and is recommended as an applicable method.
M. Ramazani, H.a. Samizadeh Lahiji, H. Ebrahimi Koulabi, A. Kafi Ghasemi,
Volume 12, Issue 45 (fall 2008)
Abstract

In order to study agronomic and morphological traits in maize hybrids in Hammedan, two early (108 and 301), three medium (604, 647 and TWC647) and two late maturing (704 and 711) hybrids were evaluated in a randomized complete block design with three replications in Agricultural and Natural Resources Research Station in Hammedan in 2005. 33 morphological and phonological traits were recorded from 10 plants randomly selected from two central rows of each plot. The maximum and minimum grain yield was obtained from SC647 and SC301, respectively. The grain yield had the highest correlation with dehusked ear weight. Factor analysis of data after varimax rotation identified four factors that accounted for 98.03% of total variance. The scatter plot of hybrids based on the two first factors (the seed yield factor and phenological structure factor) showed that SC704 had the maximum forage yield and the best physiological characteristics and SC647 had the maximum grain yield, cob diameter and number of seed in row.
S.m Ziaee, M Kafi, J Shabahang, H Khazaee, M Soleimani,
Volume 13, Issue 47 (4-2009)
Abstract

Production of halophytes using saline waters and soils, and feeding livestock with them, is one of the most sustainable ways of desert ecosystems conservation and food production for people living in these areas. A field experiment was conducted at Salinity Research Station, Ferdowsi University of Mashhad, in 2007 to evaluate the effect of planting density and harvesting time on oil and protein yield of Kochia. Treatments were arranged as a split-plot based on a randomized complete block design with three replications. Planting density (10, 20, 30 and 40 plants m-2) as assigned to main plots and two dates of harvesting (after 50% flowering and full maturity) constituted the sub-plots. Plant density had a significant effect on grain yield, mean seed weight, harvest index, oil yield, oil content and protein yield at maturity stage. Forage and protein yield were also affected by plant density at the harvest date of 50% flowering. Total dry matter, protein yield and percentage differed significantly between the two harvest dates. The greatest grain yield (2590 kg ha-1) and oil yield (357.7 kg ha-1) were achieved from 20 plants m-2, whereas those from 10 plants m-2 were minimal. Maximum protein yield (3390 Kg ha-1) was obtained from the planting density of 30 plants m-2 at 50% flowering stage. Based on the results of this study, the best qualitative yields for Kochia could be obtained from a planting density of 30 plants m-2 after 50% flowering but one may recommend planting Kochia at 20 plants m-2 for a high grain or oil production.
M Kafi, M Haghighi, A Tehrani Far, Gholamhoseein Davari Nrjad, H Nemati,
Volume 13, Issue 47 (4-2009)
Abstract

Turfgrass is important in urban landscape and by considering that organic matter has a important roll in improving physical and chemical soil characteristics using an organic matter instead of manure and MSW seems necessary .in this research the possibility of using new method of culture such as hydromulching (i.e. mixing seed, organic matter, water, and fertilizer and then distributing it) spent mushroom compost (SMC) has done .for these reason we use two level of SMC 6- month old and one –year old .in two time ,spring and autumn .the experiment design as a factorial Randomized Complete Block Design with 3 replications .Germination ,establishment ,uniformity ,density ,color was measured .results showed that SMC is better than manure especially 6-month old SMC as it is than one-year old SMC .in the spring establishment and germination is better . So using hydromulching by 6-month compost in spring is recommended.
H.r. Eshghizade, A.h. Khoshgoftarmanesh, P. Ehsanzadeh, M. Kafi,
Volume 15, Issue 57 (fall 2011)
Abstract

The growth and fluorescence parameters of chlorophyll in four corn hybrids including two sweet (K.S.C. 403 and K.S.C. 404) and two grain hybrids (S.C. 500 and S.C. 700) were evaluated in response to Fe and Zn nutrition in a nutrient solution culture. This study was conducted in a randomized complete block design with a factorial arrangement with three replications at the Soilless Culture Research Center (SCRC). Corn hybrids were exposed to two Fe levels (5 and 50 µM Fe in the form of FeEDTA) and two Zn levels (0 and 2 µM Zn in the form of ZnSO4). Increasing Fe concentration in the nutrient solution increased F0, Fm, and Fv/Fm values by 48, 96, and 123%, respectively. The fluorescence parameters of chlorophyll were affected by corn hybrid and there were significant differences in F0 and Fv/Fm at 1% level and Fm at 5% probability level among the studied hybrids. Iron deficiency significantly (P<0.05) reduced the root dry weight of all the studied hybrids. Zinc deficiency resulted in a significant decrease in the root dry weight of H403 and H500 hybrids while no significant decrease was found in the root dry weight of the H404 and H700 hybrids under Zn condition. The results showed that corn hybrids varied significantly in their tolerance to Fe and Zn deficiency. Based on the results of plant growth and fluorescence parameters of chlorophyll, the studied grain corn hybrids were more tolerant to Fe and Zn deficiency conditions in comparison with sweet corn hybrids. It seems fluorescence parameters of chlorophyll might be suitable parameters to screen corn hybrids in their tolerance to Zn and particularly Fe deficiency condition.
H. R. Fanaei, M. Galavi, M. Kafi, A. Ghanbari Bonjar, A. H.shirani-Rad,
Volume 15, Issue 57 (fall 2011)
Abstract

In order to assess the effect of drought stress and various levels of potassium on solutes accumulation and chlorophyll of canola and Indian mustard, a field experiment was conducted in a factorial design based on randomized complete block design with three replications including three irrigation regimes (I1=irrigation after 50% depletion of soil water(control),I2 =irrigation after 70% water depletion and I3 =irrigation after 90% water depletion), two species (Hyola 401 hybrid of canola and landrace cultivar of mustard) and three levels of potassium fertilizer (K1=0 ,K2=150 and K3= 250 kg.ha-1 K2SO4 ) at Agricultural and Natural Resources Research Center of Sistan in 2008-2009 cropping season. Water stress increased proline and soluble carbohydrate accumulation in the leaves of Brassica sp. In non stressed condition (control) in different growth stages, proline was lower than water-stressed plants and Leaf proline content decreased significantly after irrigation. Mustard landrace showed higher capability for accumulating assimilates such as proline, soluble carbohydrates and potassium than hybrid Hyola 401. Water stress decreased the amount of chlorophyll a, b and total leaf chlorophyll, but Potassium application caused an increase in the mentioned parameters. The highest content of chlorophyll pigments was observed at flowering stage. Potassium application caused a decrease in proline and an increase in soluble carbohydrates concentration in the leaf under water stress condition. There was a negative correlation between grain yield and proline content and soluble carbohydrates, but grain yield was positively correlated with chlorophyll, a, b. It was concluded that osmotic adjustment can be an important mechanism for Brassica species under water stress conditions and that organic and inorganic compounds such as proline, soluble carbohydrates and potassium play key roles in this regard.
A. Haghverdi, B. Ghahraman, M. Kafi, K. Davari ,
Volume 15, Issue 58 (winter 2012)
Abstract

The objective of current study was to perform screening experiment, (phase zero of response surface methodology) the analysis of salinity and water tensions for spring wheat in Mashhad region and derive water production functions. The experiment was performed in the Research Field of Agricultural Faculty of Ferdowsi University of Mashhad in 2009-2010. Two water sources were selected: saline water (10 dS/m) and water without salinity limitation (0.5 dS/m). A single replicate factorial experiment with four variables and water requirements in different growth stages, was done with each variable having two levels, 20% and 100% of water requirements. The central points of experiment area with two replications were added for estimating the curvature in the fitted response surface. The results showed the water requirements in heading and flowering were the most important variables. The fitted water production functions estimated the yield of saline and non saline plots with correlation coefficients equalsing 0.95 and 0.99. In general, the obtained results proved the efficiency of the screening experiment in identifying the relative importance of variables and excluding the ineffective variables
H. R. Eshghizadeh, M. Kafi, A. Nezami, A. H. Khoshgoftarmanesh, M. Karami,
Volume 19, Issue 73 (fall 2015)
Abstract

This study was conducted to determine some mineral content concentrations in soils and plants of three elevation classes (1500, 2200 and 3000m) and two phenological stages of flowering and seedling in north facing slopes of Sabalan rangelands. Soil samples from the depth of 20cm and plant samples using 1×1m plots with 10 replications were collected. After sample preparation, the concentrations of minerals such as calcium, phosphorous, sodium, potassium, ion, copper, zinc and magnesium were determined using spectrophotometer and flame photometer. Data was analyzed by SAS9.1 software using a Completely Randomized Design with a Generalized Linear Model procedure. Results showed that elevation had a significant effect on Ca, Fe, Cu, Zn and Mn of soil and P, Na, K, Mg and Mn of plants in the study areas (P&le0.05). Growing stages had a significant effect on all elements of plants except Ca (P&le0.05). Moreover, results showed that in three elevation classes the high demand minerals' concentrations were higher at the starting seedling stage in comparison with the flowering stage. In contrast, the low demand minerals' concentrations in three elevation sites were higher in the flowering stage in comparison with seedling stage. Interaction effect of elevation and growing stage was also significant in relation to all elements except Ca (P&le0.05).



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb