Search published articles


Showing 3 results for Khaledian

A. Mohammadi, M. H. Biglouei, M. R. Khaledian, A. R. Moridnejad, J. Rajabi,
Volume 17, Issue 66 (winter 2014)
Abstract

To study the effects of irrigation durations and land slopes on wetting pattern dimensions, some experiments were performed using an emitter with constant discharge of 4 liters per hour by 2, 4, and 6 hours irrigation durations. Experiments were conducted on lands with the slopes of 0, 5, 15 an 25 percent, with silty loam soil texture in 3 replications in Fathali region, Mogan plain, Iran. Results showed that increasing the land slope caused an increment in wetting pattern dimensions and bulk, in constant irrigation durations. When slope increased, the depth of infiltrated water along the emitter had a little decrease which wasn’t significant. The upstream and downstream components of wetting pattern were symmetrical on 0 percent slope but not on steep lands. So, optimizing the water use, which is saved in the soil, depends on the land slope and the crop should be planted 10 to 25 centimeters away from the dripper. The investigation of soil moisture distribution on wetting pattern in slope lands showed that contrary to the flat lands the main part of the moisture is accumulated in lower part of the emitter, and wetting pattern in these sloping lands was larger than in flat lands.
F. Javadzadeh Shakhali, M. Khaledian, M. Navabian, P. Shahinrokhsar,
Volume 20, Issue 75 (Spring 2016)
Abstract

Soil moisture is one of the main input parameters in many models for monitoring and predicting crop yield. The ability of mathematical models has allowed correct application of brackish water and selection of management options. The purpose of this research was to evaluate the performance of HYDRUS-2D for simulating soil volumetric water content in a heterogeneous heavy soil under field conditions. Three volumes of irrigation water (10, 15 and 20 L) and three salinity levels of irrigation water (1.279, 2.5 and 5 dSm-1) were exerted in a linear drip irrigation system with three replications. In order to check the amount of soil volumetric water content, soil profiles were drilled to 40 cm depth and vertical wall of drip irrigation line was networked. Soil volumetric water content was measured with a TDR MiniTrase kit 6050X3K1B model. The observed soil moisture values were compared with the simulated ones using statistical indices (i.e. nRMSE and CRM).  The results indicated that mean soil volumetric water content distribution in irrigation water with different levels of salinities was in the range of field capacity. The range of nRMSE values varied from 0.91 to 2.07 percent in different replications. According to calculated nRMSE values, performance of the simulation model, was ranked as excellent for simulation of soil volumetric water content. Range of CRM values was shown to be from -0.0080 to 0.0170 that was really low. Results of these two statistics indicate high ability of the model in simulating soil volumetric water content using estimating hydraulic parameters by inverse solution.


H. Khaledian, D. Nikkami,
Volume 21, Issue 1 (Spring 2017)
Abstract

Appropriate utilization of agricultural land and natural resources, decreased erosion and increased production occurs in watersheds. On the other hand, land use pattern due to increasing human activities on the ground to meet different needs, is changing. Optimization of land use is one of the management methods to achieve stability and reduce soil erosion. In this study, by using linear programming (simplex) and Geographic Information System(GIS), was investigated the land use optimization in three scenario option to: current condition, management condition, and standard condition.Erosion potential by using MPSIAC Model in irrigated land 1.65, dry lands 3.31, pasture 3.64, gardens 1.49 and 3.85 tons per hectare per year was estimated for Chehel-Gazi basin. The results of the sensitivity analysis for tree scenario showed that in the event optimize land use, erosion potential in the current Condition 0.85 percent increased, But in the land management Condition 16.92 percent and in a standard Condition 32 percent decreased. The results of sensitivity analysis showed that changes in the area of pasture all three options have the greatest impact in changing erosion potential of basin.



Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb