Search published articles


Showing 2 results for Kholghi

H Faghih, M Kholghi, S Kochekzadeh,
Volume 12, Issue 46 (1-2009)
Abstract

Overtopping is one of the main factors responsible for dam failure. To avoid overtopping, dam is equipped with one or some spillways to release the water impounded in the reservoir. The number and size of these spillways are determined on the basis of design flood. Determination of design flood of dam spillway can be formulated as a multiobjective risk problem. This problem can be solved by Quantitative Risk Analysis Methods. Here, four economical design methods which are based on risk analysis including, United States National Research Council (NRC), US Civil Engineering, Unit Curve and Partitioned Multiobjective Risk (PMR) were studied. In order to compare these methods, Risk Analysis was performed for re-determining design flood of Pishin Dam Spillway. This Dam has been constructed on the Sarbaz River. Owing to the fact that the integrals of the expected damage relations in the two methods, i.e., Civil Engineering, and Partitioned Multiobjective Risk are analytically unsolvable, Romberg numerical integration technique and Excel software were utilized for the related calculations and drawing graphs. Also, in order to select suitable distribution, the flood analysis was done using Smada software. The findings of the study indicated that design flood determined by the three methods, i.e., Civil Engineering, National Research Council and Unit Curve was almost the same, and that the amount of flood was less than the 10,000-year-old flood while design flood determined by Partitioned Multiobjective Risk Method, was larger than the 10,000- year-old flood.
L. Parviz , M. Kholghi, Kh. Valizadeh,
Volume 15, Issue 56 (sumer 2011)
Abstract

The determination of air temperature is important in the energy balance calculation, hydrology and meteorological studies. In this regard, the limited number of meteorological stations is one of the serious problems for air temperature determination on a large spatial scale. The remote sensing technique by covering large areas and using updated satellite images might be appropriate for estimation of this parameter. In this research, the negative correlation between land surface temperature and vegetation index (NDVI) has been used for air temperature estimation through TVX method in which the inference of air temperature is based on the hypothesis that the temperature of the dense vegetation canopy is close to air temperature. For investigation the performance of TVX method, images of MODIS sensor have been applied for the Sefidrod River basin in the years 1381- 1382-1384. The spilt window technique which was developed by Price has been used for land surface temperature calculation. The mean difference between observed and estimated land surface temperature using Price algorithm was about 6.2Co. This error can affect the air temperature values. Because of using NDVI index in TVX method, this method has the sensitivity to the vegetation density, though in the parts with sparse vegetation, the value of error increases. 4 percent variation of air temperature against the 0.05 increasing of maximum NDVI indicates the high performance of TVX method for air temperature estimation in large areas.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb