Search published articles


Showing 2 results for Khorsand

N. Khorsandi, M. H. Mahdian, E. Pazira, D. Nikkami,
Volume 15, Issue 56 (sumer 2011)
Abstract

Rainfall erosivity force as on important factor in soil erosion and sediment yield has been introduced in different indexes. The objective of this study was to determine suitable rainfall erosivity indices for two climates of semi-arid in Maravetape and very humid in Sangdeh, both in Khazar watershed, by correlation between rainfall erosivity indices and sediment outflow from erosion plots. For this purpose, the rainfall intensities in different time steps and the amount of rainfalls of 12 events in Maravetape and 11 events in Sangdeh have been used. Twonty five rainfall erosivity indexes were calculated based on rainfall intensity. The amount of soil loss measured after each rainfall event in 1.8×22.1 m2 erosion plots. The results of the study revealed that in very humid climate of Sangdeh and in semi-arid climate of Maravetape had high correlation of 0.803 and 0.727 (at the level of 99 percent) with sediment yield and they were applied indices in these climates of Khazar watershed. In general, the groups of 10 and 30 minutes are better than other erosivity indices in the study areas.
A. Khorsand, M. Bazaneh, S. Besharat, K. Zeynalzadeh,
Volume 22, Issue 4 (Winter 2019)
Abstract

Subsurface drip irrigation systems, compared to other irrigation systems (basin and furrow), enhance the delivery of water and nutrients directly into the root zone. The purposes of this study were to determine wetting front advancement in a subsurface drip irrigation and to compare the results with the HYDRUS 2D model simulation. In this study, the irrigation using T-Tape was carried out on a sandy-loam soil by two emitters at different irrigation times. The Wet moisture meter device was used to determine the soil water content. Evaluation of the simulated and measured soil water content was performed by using the adjusted determination coefficient (R2), relative error (RE), and the normalized root mean square error (NRMSE). Based on the results, the NRMSE of soil water content prediction for the emitters at the depths of 20 and 40 cm was calculated to be in the range of 10 to 19 and 10 to 13 percent, respectively. Also, RE for the emitters at depths of 20 and 40 cm was in the range of -16 to -5 and 8 to 11 percent, respectively. The average R2 for the emitters at depths of 20 and 40 cm was calculated to be 0.87 and 0.98, respectively. Also, five scenarios (F1, F2, T1, T2 and S1) were evaluated to assess the amount of water stored in the soil profile and water mass balance. The results indicated that the model could be used to predict the soil water content subsurface drip irrigation.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb