Z. Khosravani, S. J. Khajeddin, A. Soffianian, M. Mohebbi, A. H. Parsamehr,
Volume 16, Issue 59 (spring 2012)
Abstract
LISS IV sensor's data from IRS-P6 satellite was used to produce land use map of eastern region of Isfahan, the studied part of which has an area of 22121 hectares. Its three band data, namely band 2 (Green), band 3 (Red) and band 4 (Near infra red) of LISS-IV sensor images with 5.8 m ground resolution were georeferenced by nearest neighbor method and first-order polynomial model to the DEM map of 1:25000, where the RMSE was equal to 0.3 pixel. To analyze the satellite data, various image processing methods such as supervised and unsupervised classification methods, principal component analysis, NDVI vegetation index and filtering were applied to the satellite data. Finally, the land use map was produced with hybrid method. The final map detected 6 land uses very clearly, which are: Agricultural lands, barren lands, disturbed lands, cultivated Haloxylon amodendron, roads, residential areas and industrial locations. The kappa of land use map is 0.89 and the overall precision is 0.92. The barren lands have a very poor natural vegetation and are considered as natural deserts. Disturbed lands have been formed because of brick kiln activities, and the vegetation cover of these areas has disappeared completely The LISS IV data has a high ability to detect the various studied land-uses especially to digitize the roads. They can be used to update the 1:25000 topographic maps, as well.
Z. Khosravani, S. J. Khajeddin, M. Mohebbi, A. R. Soffianian, A. H. Parsamehr,
Volume 19, Issue 72 (summer 2015)
Abstract
Segzi, located in the east of Isfahan, is one of the most important centers of desertification crisis in Isfahan province. Human overtaking, land deformation and the presence of huge artificial topography in flat plain has created a very unpleasant landscape in the area. In this study, satellite images Cartosat-1 were used for mapping land degradation. By using DGPS, 9 points with appropriate distributions related to road junctions were selected. These points after Interior and exterior orientation determined as control points in Cartosat-1 pair images. To improve compliance, process of points development and production of 31 tie points was done. These points was coordinated in triangulation process and introduced as check points. Desirable RMSe, 0.3 pixel is obtained. Then DEM based on 40 points was prepared with 15×15m pixel size. The DEM, in GIS software was classified to 9 elavation classes by Natural Breaks method. The file of classified raster DEM convert to vector andcut and fill appeared as polygon that by encoding them, excavation map is produced in GIS with Kappa 0.95 and 0.97 overall accuracy. The Results of this study show that Cartosat-1 satellite images have ability for study of degraded lands and anthropogenic holes. The topographic changes caused the loss of natural vegetation and desertification in this area has developed.
P. Khosravani, M. Baghernejad, A. Abtahi, R. Ghasemi,
Volume 25, Issue 3 (Fall 2021)
Abstract
Soil classification in a standard system is usually defined based on information obtained from properties and their variations in different map units. The aim of this study was to compare soil genesis and morphological characteristics in different landforms with WRB and Soil Taxonomy (ST) Systems. From nine studied profiles, six profiles were selected as representative profiles and dug in Colluvial fans, Piedmont plain, and Alluvial plain physiographic units, respectively. Then, the soils were classified according to the pattern of the two systems. Also, variation analysis of variance (ANOVA) and comparing means were used to quantify interested soil properties. The results of soil physio-chemical properties at different landform positions were significant based on analysis of variance of the effect of physiographic units and soil depth at the level of 1 %. Soil classification results based on WRB indicated that WRB were recognized four reference soil groups (RSG) included Regosols, Cambisols, Calcisols, and Gleysols at the first level of WRB classification in comparison of ST with recognizing two order Entisols and Inceptisols could separate more soils. The soils were located on the alluvial plain with a high groundwater level in the WRB due to the creation of restrictive conditions for root development in contrast to the ST called “Aquepts” in the suborder level but in a WRB is classified as the “Gleysols” RSG. On the other hand, ST, unlike WRB, used the Shallow criteria at the family level to describe the shallowness of soils and the limitations of root development. Generally, the efficiency of each system varies despite the differences in their structure and depending on the purpose of using them.