Search published articles


Showing 2 results for Kilanehei

M. Sadeghi, T.o. Naeeni, F. Kilanehei, M. Galoie,
Volume 26, Issue 3 (Fall 2022)
Abstract

One of the most important hydraulic structures in a dam is the spillway. The design of the ogee spillway crest is based on the lower profile of the free-flow jet passing through the sharp-crested weir. When the downstream ogee spillway profile for the design discharge conforms to the lower profile of the free-jet passing through the sharp-crested weir, the pressure on that surface of the spillway becomes zero. In this study, the design of the ogee spillway was performed initially based on both two- and three-dimensional numerical modeling and then compared to the USBR standard method. The comparison of the final numerical and analytical results showed that although the vertical two-dimensional outputs were completely in agreement with the USBR standard profile, the three-dimensional profiles were different because in this model, guide walls were not considered. According to the analysis, if the flow entering the spillway is parallel to its axis, the lower profile of the sharp-edge spillway will be in complete agreement with the standard profile. Since, the design of guide wall geometry for ogee spillways is carried out using physical modeling which iteratively revises during a high-cost trial and error procedure, this research based on the case study of the spillway of Karun-3 dam has been tried using numerical modeling. The closest geometry to the geometry of the overflow guide wall was obtained which creates the least difference in transverse velocities. In this way, the design of guide walls can be done with more accuracy and low cost in comparison to physical modeling.

M. R. Taghizadeh, A. Motamedi, M. Galoie, F. Kilanehei,
Volume 27, Issue 4 (Winter 2023)
Abstract

Understanding flow behavior over bedforms is one of the most complex topics in sedimentary engineering. Despite numerous studies that have been conducted on river beds, the understanding of the interaction between flow and bed in turbid and clear waters is still impoverished. The present study mainly focused on simulating clear and turbid flows using SSIIM software. This study modeled the flow through a 12-meter channel with nine consecutive dunes of 1-meter length and 4 cm height. Nine simulations were performed to investigate the effects of flow velocity and flow separation zone in clear and turbid water. Finally, the results were compared with the experimental results of previous researchers using the PIV. The modeling results showed that the length of the flow separation zone increases with increasing velocity, and the highest probability of flow separation occurs at the highest velocity. In turbid flow, flow separation is less than the same flow condition in clear flow, and as fluid density increases, the length of the flow separation zone decreases. This study demonstrates the acceptable functionality of the SSIIM software and its accuracy in estimating flow behavior with and without sediment.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb