Search published articles


Showing 2 results for Kohkan

M. Iravani, M. Solouki, A.m. Rezai, B.a. Siasar, S.a. Kohkan,
Volume 12, Issue 45 (fall 2008)
Abstract

In order to investigate the diversity and relationship between agronomical traits with seed yield components in barley, twenty advanced barley lines were evaluated in a randomized complete block design with 3 replications at Research Center of Agriculture in Sistan in 2006. Each plot consisted of six rows spaced 20 cm apart and 5 meters long. In this research, 24 Agronomic traits were measured on five randomly selected plants in the central rows of each plot. Analysis of variance showed that there were significant differences among the lines for most of the traits. Line No.7 had the highest (406 grs/m2) and line No.5 had the lowest (309 grs/m2) seed yield. There were high correlation between seed yield and number of panicle/m2. Factor analysis results indicated that 7 independent factors explained 82 percent of the total variation. The first two factors, namely yield components and tillering capacity, explained 41 percent of the total variation. Therefore, it can be concluded that the traits are related to seed yield and tillering capacity, i.e., number of seed per main panicle. 1000 seed weight, number of seed per plant, number of days to physiological maturity and days to heading are the most important characteristics in selecting lines with high seed yield. Number of fertile tiller, total number of tillers and peduncle length were also next set of important traits. Number of days to emergence, nodule number and number of panicle per m2 were also important as selection criteria. Seed weight per plant, biological yield, awn length and the traits that were related to flag leaf had lower importance for selection of lines with high seed yield.
B Siahsar, A Taleei, A Peyghambari, M Naghavi, A Rezaee, Sh Kohkan,
Volume 13, Issue 47 (4-2009)
Abstract

In order to map the genomic regions affecting barley forage quantity and quality, two experiments were conducted with 72 doubled haploid lines and their two parents (‘Steptoe’ and ‘Morex’), at the Research Farms of the Faculty of Crop and Animal Sciences, University College of Agriculture and Natural Resources, University of Tehran and Agriculture and Natural Resources Research Station of Sistan, in 2007. The experiments were arranged in a randomized complete block design with two replications. Each plot consisted of six rows that were 3m in length and spaced 25cm apart. QTL analysis was conducted by Composite interval mapping (CIM) method separately for each trait in each location. The main effect of genotype was high significant for all the studied traits. Transgressive segregation in both directions (positive and negative) was observed for all the studied traits. There was a negative relationship between forage qualityrelated with quantity-related traits. Thirty-three QTLs controlling different studied traits were identified. Phenotypic variance explained by these QTLs varies from 7.07 to 39.04%. Highest LOD scores were obtained for the leaf to stem ratio on chromosome 2H. QTLs of forage quality (total digestible nutrient, dry organic matter digestibility, leaf to stem ratio, seed to forage ratio and number of tiller per plant) and quantity (plant height, forage wet and dry matter) indexes were found on chromosomes 1H, 2H, 3H, 4H, 5H, 6H and 7H. Most of mapped QTLs appear to be fairly stable between locations and can become candidates for marker-assisted selection.

Page 1 from 1     

© 2024 CC BY-NC 4.0 | JWSS - Isfahan University of Technology

Designed & Developed by : Yektaweb